Add modeling_hf_nomic_bert.py
Browse files- modeling_hf_nomic_bert.py +2115 -0
modeling_hf_nomic_bert.py
ADDED
|
@@ -0,0 +1,2115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2022, Tri Dao.
|
| 2 |
+
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
| 3 |
+
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
| 4 |
+
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
| 5 |
+
|
| 6 |
+
import collections
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
| 10 |
+
import math
|
| 11 |
+
import os
|
| 12 |
+
import re
|
| 13 |
+
from collections import OrderedDict
|
| 14 |
+
from functools import partial
|
| 15 |
+
from typing import List, Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
from einops import rearrange, repeat
|
| 22 |
+
from safetensors.torch import load_file as safe_load_file
|
| 23 |
+
from torch.nn.modules.utils import _pair
|
| 24 |
+
from transformers import GPT2Config, PreTrainedModel, ViTConfig, ViTModel
|
| 25 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
| 26 |
+
from transformers.models.bert.modeling_bert import (
|
| 27 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 28 |
+
MaskedLMOutput,
|
| 29 |
+
SequenceClassifierOutput,
|
| 30 |
+
)
|
| 31 |
+
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
| 32 |
+
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
|
| 33 |
+
|
| 34 |
+
from .configuration_hf_nomic_bert import NomicBertConfig
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
from torch.nn.functional import scaled_dot_product_attention
|
| 38 |
+
except ImportError:
|
| 39 |
+
scaled_dot_product_attention = None
|
| 40 |
+
|
| 41 |
+
logger = logging.getLogger(__name__)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# adapted from flash attention, added safe serialization option for hf models
|
| 45 |
+
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
|
| 46 |
+
# If not fp32, then we don't want to load directly to the GPU
|
| 47 |
+
mapped_device = "cpu" if dtype not in [torch.float32, None] else device
|
| 48 |
+
is_sharded = False
|
| 49 |
+
load_safe = False
|
| 50 |
+
resolved_archive_file = None
|
| 51 |
+
|
| 52 |
+
weights_path = os.path.join(model_name, WEIGHTS_NAME)
|
| 53 |
+
weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
|
| 54 |
+
safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
|
| 55 |
+
safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)
|
| 56 |
+
|
| 57 |
+
if os.path.isfile(weights_path):
|
| 58 |
+
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
| 59 |
+
elif os.path.isfile(weights_index_path):
|
| 60 |
+
resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False)
|
| 61 |
+
is_sharded = True
|
| 62 |
+
elif os.path.isfile(safe_weights_path):
|
| 63 |
+
resolved_archive_file = cached_file(model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
| 64 |
+
load_safe = True
|
| 65 |
+
elif os.path.isfile(safe_weights_index_path):
|
| 66 |
+
resolved_archive_file = cached_file(
|
| 67 |
+
model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
|
| 68 |
+
)
|
| 69 |
+
is_sharded = True
|
| 70 |
+
load_safe = True
|
| 71 |
+
else: # Try loading from HF hub instead of from local files
|
| 72 |
+
resolved_archive_file = None
|
| 73 |
+
for weight_name in [WEIGHTS_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
| 74 |
+
resolved_archive_file = cached_file(model_name, weight_name, _raise_exceptions_for_missing_entries=False)
|
| 75 |
+
if resolved_archive_file is not None:
|
| 76 |
+
if weight_name in [SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
| 77 |
+
load_safe = True
|
| 78 |
+
if weight_name in [WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
| 79 |
+
is_sharded = True
|
| 80 |
+
break
|
| 81 |
+
|
| 82 |
+
if resolved_archive_file is None:
|
| 83 |
+
raise EnvironmentError(f"Model name {model_name} was not found.")
|
| 84 |
+
|
| 85 |
+
if load_safe:
|
| 86 |
+
loader = partial(safe_load_file, device=mapped_device)
|
| 87 |
+
else:
|
| 88 |
+
loader = partial(torch.load, map_location=mapped_device)
|
| 89 |
+
|
| 90 |
+
if is_sharded:
|
| 91 |
+
# resolved_archive_file becomes a list of files that point to the different
|
| 92 |
+
# checkpoint shards in this case.
|
| 93 |
+
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(model_name, resolved_archive_file)
|
| 94 |
+
state_dict = {}
|
| 95 |
+
for sharded_file in resolved_archive_file:
|
| 96 |
+
state_dict.update(loader(sharded_file))
|
| 97 |
+
else:
|
| 98 |
+
state_dict = loader(resolved_archive_file)
|
| 99 |
+
# Convert dtype before moving to GPU to save memory
|
| 100 |
+
if dtype is not None:
|
| 101 |
+
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
|
| 102 |
+
state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
|
| 103 |
+
return state_dict
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def filter_shapes(state_dict, model):
|
| 107 |
+
"""
|
| 108 |
+
Filters the state dict to match the current model shape.
|
| 109 |
+
"""
|
| 110 |
+
filtered_state_dict = {}
|
| 111 |
+
for key, value in state_dict.items():
|
| 112 |
+
if key in model.state_dict():
|
| 113 |
+
if value.shape == model.state_dict()[key].shape:
|
| 114 |
+
filtered_state_dict[key] = value
|
| 115 |
+
return filtered_state_dict
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def remap_bert_state_dict(
|
| 119 |
+
state_dict,
|
| 120 |
+
config,
|
| 121 |
+
remove_bert=False,
|
| 122 |
+
remove_cls_weights=False,
|
| 123 |
+
add_pooling_layer=False,
|
| 124 |
+
):
|
| 125 |
+
"""
|
| 126 |
+
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
def add_bert_prefix(key):
|
| 130 |
+
# prepend bert. to the key
|
| 131 |
+
if key.startswith("bert.") or key.startswith("cls."):
|
| 132 |
+
return key
|
| 133 |
+
return f"bert.{key}"
|
| 134 |
+
|
| 135 |
+
state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
|
| 136 |
+
|
| 137 |
+
# LayerNorm
|
| 138 |
+
def key_mapping_ln_gamma_beta(key):
|
| 139 |
+
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
| 140 |
+
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
| 141 |
+
return key
|
| 142 |
+
|
| 143 |
+
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
|
| 144 |
+
|
| 145 |
+
# Layers
|
| 146 |
+
def key_mapping_layers(key):
|
| 147 |
+
return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)
|
| 148 |
+
|
| 149 |
+
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
| 150 |
+
|
| 151 |
+
# LayerNorm
|
| 152 |
+
def key_mapping_ln(key):
|
| 153 |
+
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
|
| 154 |
+
key = re.sub(
|
| 155 |
+
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
| 156 |
+
r"bert.encoder.layers.\1.norm1.\2",
|
| 157 |
+
key,
|
| 158 |
+
)
|
| 159 |
+
key = re.sub(
|
| 160 |
+
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
| 161 |
+
r"bert.encoder.layers.\1.norm2.\2",
|
| 162 |
+
key,
|
| 163 |
+
)
|
| 164 |
+
key = re.sub(
|
| 165 |
+
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
| 166 |
+
r"cls.predictions.transform.layer_norm.\1",
|
| 167 |
+
key,
|
| 168 |
+
)
|
| 169 |
+
return key
|
| 170 |
+
|
| 171 |
+
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
| 172 |
+
|
| 173 |
+
# MLP
|
| 174 |
+
def key_mapping_mlp(key):
|
| 175 |
+
key = re.sub(
|
| 176 |
+
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
| 177 |
+
r"bert.encoder.layers.\1.mlp.fc1.\2",
|
| 178 |
+
key,
|
| 179 |
+
)
|
| 180 |
+
key = re.sub(
|
| 181 |
+
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
|
| 182 |
+
r"bert.encoder.layers.\1.mlp.fc2.\2",
|
| 183 |
+
key,
|
| 184 |
+
)
|
| 185 |
+
return key
|
| 186 |
+
|
| 187 |
+
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
| 188 |
+
|
| 189 |
+
# Attention
|
| 190 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
| 191 |
+
for d in range(config.num_hidden_layers):
|
| 192 |
+
if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
|
| 193 |
+
continue
|
| 194 |
+
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
|
| 195 |
+
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
|
| 196 |
+
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
|
| 197 |
+
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
|
| 198 |
+
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
|
| 199 |
+
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
|
| 200 |
+
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
| 201 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
|
| 202 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
|
| 203 |
+
else:
|
| 204 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
|
| 205 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
|
| 206 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
|
| 207 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)
|
| 208 |
+
|
| 209 |
+
def key_mapping_attn(key):
|
| 210 |
+
return re.sub(
|
| 211 |
+
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
| 212 |
+
r"bert.encoder.layers.\1.attn.out_proj.\2",
|
| 213 |
+
key,
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
| 217 |
+
|
| 218 |
+
def key_mapping_decoder_bias(key):
|
| 219 |
+
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
| 220 |
+
|
| 221 |
+
# remove nsp weights, we don't use
|
| 222 |
+
state_dict.pop("cls.seq_relationship.weight", None)
|
| 223 |
+
state_dict.pop("cls.seq_relationship.bias", None)
|
| 224 |
+
state_dict.pop("bert.embeddings.position_ids", None)
|
| 225 |
+
|
| 226 |
+
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
|
| 227 |
+
|
| 228 |
+
if remove_cls_weights:
|
| 229 |
+
cls_weights = [
|
| 230 |
+
"cls.predictions.decoder.bias",
|
| 231 |
+
"cls.predictions.transform.dense.weight",
|
| 232 |
+
"cls.predictions.transform.dense.bias",
|
| 233 |
+
"cls.predictions.transform.layer_norm.weight",
|
| 234 |
+
"cls.predictions.transform.layer_norm.bias",
|
| 235 |
+
"cls.predictions.decoder.weight",
|
| 236 |
+
]
|
| 237 |
+
for weight in cls_weights:
|
| 238 |
+
state_dict.pop(weight, None)
|
| 239 |
+
|
| 240 |
+
# Word embedding
|
| 241 |
+
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
| 242 |
+
if pad_vocab_size_multiple > 1:
|
| 243 |
+
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
| 244 |
+
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
|
| 245 |
+
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
| 246 |
+
)
|
| 247 |
+
if not remove_cls_weights:
|
| 248 |
+
if "cls.predictions.decoder.weight" not in state_dict:
|
| 249 |
+
state_dict['cls.predictions.decoder.weight'] = state_dict['bert.embeddings.word_embeddings.weight'].clone()
|
| 250 |
+
else:
|
| 251 |
+
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
| 252 |
+
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
| 253 |
+
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
| 254 |
+
)
|
| 255 |
+
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
| 256 |
+
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
| 257 |
+
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
| 258 |
+
if "cls.predictions.decoder.bias" in state_dict:
|
| 259 |
+
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
| 260 |
+
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
| 261 |
+
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
if add_pooling_layer is False:
|
| 265 |
+
pooler_weights = [
|
| 266 |
+
"bert.pooler.dense.weight",
|
| 267 |
+
"bert.pooler.dense.bias",
|
| 268 |
+
]
|
| 269 |
+
for key in pooler_weights:
|
| 270 |
+
state_dict.pop(key, None)
|
| 271 |
+
|
| 272 |
+
if remove_bert:
|
| 273 |
+
|
| 274 |
+
def remove_bert_prefix(key):
|
| 275 |
+
key = re.sub(r"^bert.", "", key)
|
| 276 |
+
return key
|
| 277 |
+
|
| 278 |
+
state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())
|
| 279 |
+
|
| 280 |
+
return state_dict
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
| 284 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 285 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 286 |
+
def norm_cdf(x):
|
| 287 |
+
# Computes standard normal cumulative distribution function
|
| 288 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
| 289 |
+
|
| 290 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 291 |
+
print(
|
| 292 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 293 |
+
"The distribution of values may be incorrect.",
|
| 294 |
+
stacklevel=2,
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# Values are generated by using a truncated uniform distribution and
|
| 298 |
+
# then using the inverse CDF for the normal distribution.
|
| 299 |
+
# Get upper and lower cdf values
|
| 300 |
+
l = norm_cdf((a - mean) / std)
|
| 301 |
+
u = norm_cdf((b - mean) / std)
|
| 302 |
+
|
| 303 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 304 |
+
# [2l-1, 2u-1].
|
| 305 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 306 |
+
|
| 307 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 308 |
+
# standard normal
|
| 309 |
+
tensor.erfinv_()
|
| 310 |
+
|
| 311 |
+
# Transform to proper mean, std
|
| 312 |
+
tensor.mul_(std * math.sqrt(2.0))
|
| 313 |
+
tensor.add_(mean)
|
| 314 |
+
|
| 315 |
+
# Clamp to ensure it's in the proper range
|
| 316 |
+
tensor.clamp_(min=a, max=b)
|
| 317 |
+
return tensor
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
def trunc_normal_tf_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
|
| 321 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
| 322 |
+
normal distribution. The values are effectively drawn from the
|
| 323 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 324 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 325 |
+
the bounds. The method used for generating the random values works
|
| 326 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
| 327 |
+
|
| 328 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
| 329 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
| 330 |
+
and the result is subsquently scaled and shifted by the mean and std args.
|
| 331 |
+
|
| 332 |
+
Args:
|
| 333 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 334 |
+
mean: the mean of the normal distribution
|
| 335 |
+
std: the standard deviation of the normal distribution
|
| 336 |
+
a: the minimum cutoff value
|
| 337 |
+
b: the maximum cutoff value
|
| 338 |
+
Examples:
|
| 339 |
+
>>> w = torch.empty(3, 5)
|
| 340 |
+
>>> nn.init.trunc_normal_(w)
|
| 341 |
+
"""
|
| 342 |
+
with torch.no_grad():
|
| 343 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
| 344 |
+
tensor.mul_(std).add_(mean)
|
| 345 |
+
return tensor
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
class NomicBertPreTrainedModel(PreTrainedModel):
|
| 349 |
+
"""An abstract class to handle weights initialization and
|
| 350 |
+
a simple interface for dowloading and loading pretrained models.
|
| 351 |
+
"""
|
| 352 |
+
|
| 353 |
+
config_class = NomicBertConfig
|
| 354 |
+
base_model_prefix = "model"
|
| 355 |
+
supports_gradient_checkpointing = True
|
| 356 |
+
_no_split_modules = ["Block"]
|
| 357 |
+
_skip_keys_device_placement = "past_key_values"
|
| 358 |
+
|
| 359 |
+
def __init__(self, config, *inputs, **kwargs):
|
| 360 |
+
super().__init__(config)
|
| 361 |
+
if not isinstance(config, GPT2Config):
|
| 362 |
+
raise ValueError(
|
| 363 |
+
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
|
| 364 |
+
"To create a model from a Google pretrained model use "
|
| 365 |
+
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
| 366 |
+
self.__class__.__name__, self.__class__.__name__
|
| 367 |
+
)
|
| 368 |
+
)
|
| 369 |
+
self.config = config
|
| 370 |
+
|
| 371 |
+
@classmethod
|
| 372 |
+
def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
|
| 373 |
+
"""
|
| 374 |
+
Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
|
| 375 |
+
Download and cache the pre-trained model file if needed.
|
| 376 |
+
|
| 377 |
+
Params:
|
| 378 |
+
pretrained_model_name_or_path: either:
|
| 379 |
+
- a path or url to a pretrained model archive containing:
|
| 380 |
+
. `bert_config.json` a configuration file for the model
|
| 381 |
+
. `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
|
| 382 |
+
- a path or url to a pretrained model archive containing:
|
| 383 |
+
. `bert_config.json` a configuration file for the model
|
| 384 |
+
. `model.chkpt` a TensorFlow checkpoint
|
| 385 |
+
*inputs, **kwargs: additional input for the specific NomicBert class
|
| 386 |
+
(ex: num_labels for NomicBertForSequenceClassification)
|
| 387 |
+
"""
|
| 388 |
+
# Instantiate model.
|
| 389 |
+
if config is None:
|
| 390 |
+
config = cls.config_class.from_pretrained(model_name)
|
| 391 |
+
remove_cls = cls != NomicBertForPreTraining
|
| 392 |
+
remove_bert_prefix = cls != NomicBertForPreTraining and cls != NomicBertForSequenceClassification
|
| 393 |
+
ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
|
| 394 |
+
num_labels = kwargs.pop("num_labels", None)
|
| 395 |
+
rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
|
| 396 |
+
strict = kwargs.pop("strict", True)
|
| 397 |
+
dtype = kwargs.pop("torch_dtype", None)
|
| 398 |
+
if rotary_scaling_factor:
|
| 399 |
+
config.rotary_scaling_factor = rotary_scaling_factor
|
| 400 |
+
|
| 401 |
+
if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
|
| 402 |
+
config.n_positions = 2048
|
| 403 |
+
if num_labels:
|
| 404 |
+
config.num_labels = num_labels
|
| 405 |
+
|
| 406 |
+
if "add_pooling_layer" in kwargs:
|
| 407 |
+
model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
|
| 408 |
+
else:
|
| 409 |
+
if cls == NomicBertModel:
|
| 410 |
+
model = cls(config, *inputs, add_pooling_layer=False)
|
| 411 |
+
else:
|
| 412 |
+
model = cls(config, *inputs)
|
| 413 |
+
|
| 414 |
+
if dtype is not None:
|
| 415 |
+
model = model.to(dtype=dtype)
|
| 416 |
+
# TODO: fix this
|
| 417 |
+
# Assuming we know what we're doing when loading from disk
|
| 418 |
+
# Prob a bad assumption but i'm tired and want to train this asap
|
| 419 |
+
if os.path.exists(model_name):
|
| 420 |
+
model_path = f"{model_name}/pytorch_model.bin"
|
| 421 |
+
if os.path.exists(model_path):
|
| 422 |
+
state_dict = torch.load(f"{model_name}/pytorch_model.bin")
|
| 423 |
+
else:
|
| 424 |
+
model_path = f"{model_name}/model.safetensors"
|
| 425 |
+
if not os.path.exists(model_path):
|
| 426 |
+
raise ValueError(f"Model path {model_path} not found")
|
| 427 |
+
state_dict = safe_load_file(model_path)
|
| 428 |
+
|
| 429 |
+
if ignore_mismatched_shapes:
|
| 430 |
+
state_dict = filter_shapes(state_dict, model)
|
| 431 |
+
load_return = model.load_state_dict(state_dict, strict=False)
|
| 432 |
+
else:
|
| 433 |
+
# TODO: can probably check config class and see if we need to remap from a bert model
|
| 434 |
+
state_dict = state_dict_from_pretrained(model_name, dtype=dtype)
|
| 435 |
+
state_dict = remap_bert_state_dict(
|
| 436 |
+
state_dict,
|
| 437 |
+
config,
|
| 438 |
+
remove_bert=remove_bert_prefix,
|
| 439 |
+
remove_cls_weights=remove_cls,
|
| 440 |
+
add_pooling_layer=getattr(config, "add_pooling_layer", False),
|
| 441 |
+
)
|
| 442 |
+
if ignore_mismatched_shapes:
|
| 443 |
+
state_dict = filter_shapes(state_dict, model)
|
| 444 |
+
|
| 445 |
+
load_return = model.load_state_dict(state_dict, strict=strict)
|
| 446 |
+
logger.warning(load_return)
|
| 447 |
+
return model
|
| 448 |
+
|
| 449 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 450 |
+
if isinstance(module, NomicBertEncoder):
|
| 451 |
+
module.gradient_checkpointing = value
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
| 455 |
+
def _init_weights(module, initializer_range=0.02):
|
| 456 |
+
if isinstance(module, nn.Linear):
|
| 457 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
| 458 |
+
if module.bias is not None:
|
| 459 |
+
nn.init.zeros_(module.bias)
|
| 460 |
+
elif isinstance(module, nn.Embedding):
|
| 461 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
| 462 |
+
if module.padding_idx is not None:
|
| 463 |
+
nn.init.zeros_(module.weight[module.padding_idx])
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
def _ntuple(n):
|
| 467 |
+
def parse(x):
|
| 468 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
| 469 |
+
return tuple(x)
|
| 470 |
+
return tuple(repeat(x, n))
|
| 471 |
+
|
| 472 |
+
return parse
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
to_1tuple = _ntuple(1)
|
| 476 |
+
to_2tuple = _ntuple(2)
|
| 477 |
+
to_3tuple = _ntuple(3)
|
| 478 |
+
to_4tuple = _ntuple(4)
|
| 479 |
+
to_ntuple = _ntuple
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
|
| 483 |
+
"""
|
| 484 |
+
Create 2D sin/cos positional embeddings.
|
| 485 |
+
|
| 486 |
+
Args:
|
| 487 |
+
embed_dim (`int`):
|
| 488 |
+
Embedding dimension.
|
| 489 |
+
grid_size (`int`):
|
| 490 |
+
The grid height and width.
|
| 491 |
+
add_cls_token (`bool`, *optional*, defaults to `False`):
|
| 492 |
+
Whether or not to add a classification (CLS) token.
|
| 493 |
+
|
| 494 |
+
Returns:
|
| 495 |
+
(`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the
|
| 496 |
+
position embeddings (with or without classification token)
|
| 497 |
+
"""
|
| 498 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
| 499 |
+
|
| 500 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
| 501 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 502 |
+
grid = np.stack(grid, axis=0)
|
| 503 |
+
|
| 504 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
| 505 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 506 |
+
if add_cls_token:
|
| 507 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
| 508 |
+
return pos_embed
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 512 |
+
if embed_dim % 2 != 0:
|
| 513 |
+
raise ValueError("embed_dim must be even")
|
| 514 |
+
|
| 515 |
+
# use half of dimensions to encode grid_h
|
| 516 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
| 517 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
| 518 |
+
|
| 519 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
| 520 |
+
return emb
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 524 |
+
"""
|
| 525 |
+
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
|
| 526 |
+
"""
|
| 527 |
+
if embed_dim % 2 != 0:
|
| 528 |
+
raise ValueError("embed_dim must be even")
|
| 529 |
+
|
| 530 |
+
omega = np.arange(embed_dim // 2, dtype=float)
|
| 531 |
+
omega /= embed_dim / 2.0
|
| 532 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
| 533 |
+
|
| 534 |
+
pos = pos.reshape(-1) # (M,)
|
| 535 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
| 536 |
+
|
| 537 |
+
emb_sin = np.sin(out) # (M, D/2)
|
| 538 |
+
emb_cos = np.cos(out) # (M, D/2)
|
| 539 |
+
|
| 540 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 541 |
+
return emb
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
def ndgrid(*tensors) -> Tuple[torch.Tensor, ...]:
|
| 545 |
+
"""generate N-D grid in dimension order.
|
| 546 |
+
|
| 547 |
+
The ndgrid function is like meshgrid except that the order of the first two input arguments are switched.
|
| 548 |
+
|
| 549 |
+
That is, the statement
|
| 550 |
+
[X1,X2,X3] = ndgrid(x1,x2,x3)
|
| 551 |
+
|
| 552 |
+
produces the same result as
|
| 553 |
+
|
| 554 |
+
[X2,X1,X3] = meshgrid(x2,x1,x3)
|
| 555 |
+
|
| 556 |
+
This naming is based on MATLAB, the purpose is to avoid confusion due to torch's change to make
|
| 557 |
+
torch.meshgrid behaviour move from matching ndgrid ('ij') indexing to numpy meshgrid defaults of ('xy').
|
| 558 |
+
|
| 559 |
+
"""
|
| 560 |
+
try:
|
| 561 |
+
return torch.meshgrid(*tensors, indexing='ij')
|
| 562 |
+
except TypeError:
|
| 563 |
+
# old PyTorch < 1.10 will follow this path as it does not have indexing arg,
|
| 564 |
+
# the old behaviour of meshgrid was 'ij'
|
| 565 |
+
return torch.meshgrid(*tensors)
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
def build_fourier_pos_embed(
|
| 569 |
+
feat_shape: List[int],
|
| 570 |
+
bands: Optional[torch.Tensor] = None,
|
| 571 |
+
num_bands: int = 64,
|
| 572 |
+
max_res: int = 224,
|
| 573 |
+
temperature: float = 10000.0,
|
| 574 |
+
linear_bands: bool = False,
|
| 575 |
+
include_grid: bool = False,
|
| 576 |
+
in_pixels: bool = True,
|
| 577 |
+
ref_feat_shape: Optional[List[int]] = None,
|
| 578 |
+
dtype: torch.dtype = torch.float32,
|
| 579 |
+
device: Optional[torch.device] = None,
|
| 580 |
+
) -> List[torch.Tensor]:
|
| 581 |
+
"""
|
| 582 |
+
|
| 583 |
+
Args:
|
| 584 |
+
feat_shape: Feature shape for embedding.
|
| 585 |
+
bands: Pre-calculated frequency bands.
|
| 586 |
+
num_bands: Number of frequency bands (determines output dim).
|
| 587 |
+
max_res: Maximum resolution for pixel based freq.
|
| 588 |
+
temperature: Temperature for non-pixel freq.
|
| 589 |
+
linear_bands: Linear band spacing for pixel based freq.
|
| 590 |
+
include_grid: Include the spatial grid in output.
|
| 591 |
+
in_pixels: Output in pixel freq.
|
| 592 |
+
ref_feat_shape: Reference feature shape for resize / fine-tune.
|
| 593 |
+
dtype: Output dtype.
|
| 594 |
+
device: Output device.
|
| 595 |
+
|
| 596 |
+
Returns:
|
| 597 |
+
|
| 598 |
+
"""
|
| 599 |
+
if bands is None:
|
| 600 |
+
if in_pixels:
|
| 601 |
+
bands = pixel_freq_bands(
|
| 602 |
+
num_bands,
|
| 603 |
+
float(max_res),
|
| 604 |
+
linear_bands=linear_bands,
|
| 605 |
+
device=device,
|
| 606 |
+
)
|
| 607 |
+
else:
|
| 608 |
+
bands = freq_bands(
|
| 609 |
+
num_bands,
|
| 610 |
+
temperature=temperature,
|
| 611 |
+
step=1,
|
| 612 |
+
device=device,
|
| 613 |
+
)
|
| 614 |
+
else:
|
| 615 |
+
if device is None:
|
| 616 |
+
device = bands.device
|
| 617 |
+
if dtype is None:
|
| 618 |
+
dtype = bands.dtype
|
| 619 |
+
|
| 620 |
+
if in_pixels:
|
| 621 |
+
t = [torch.linspace(-1.0, 1.0, steps=s, device=device, dtype=torch.float32) for s in feat_shape]
|
| 622 |
+
else:
|
| 623 |
+
t = [torch.arange(s, device=device, dtype=torch.int64).to(torch.float32) for s in feat_shape]
|
| 624 |
+
|
| 625 |
+
if ref_feat_shape is not None:
|
| 626 |
+
# eva's scheme for resizing rope embeddings (ref shape = pretrain)
|
| 627 |
+
t = [x / f * r for x, f, r in zip(t, feat_shape, ref_feat_shape)]
|
| 628 |
+
|
| 629 |
+
grid = torch.stack(ndgrid(t), dim=-1)
|
| 630 |
+
grid = grid.unsqueeze(-1)
|
| 631 |
+
pos = grid * bands
|
| 632 |
+
|
| 633 |
+
pos_sin, pos_cos = pos.sin().to(dtype=dtype), pos.cos().to(dtype)
|
| 634 |
+
out = [grid, pos_sin, pos_cos] if include_grid else [pos_sin, pos_cos]
|
| 635 |
+
return out
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
def build_rotary_pos_embed(
|
| 639 |
+
feat_shape: List[int],
|
| 640 |
+
bands: Optional[torch.Tensor] = None,
|
| 641 |
+
dim: int = 64,
|
| 642 |
+
max_res: int = 224,
|
| 643 |
+
temperature: float = 10000.0,
|
| 644 |
+
linear_bands: bool = False,
|
| 645 |
+
in_pixels: bool = True,
|
| 646 |
+
ref_feat_shape: Optional[List[int]] = None,
|
| 647 |
+
dtype: torch.dtype = torch.float32,
|
| 648 |
+
device: Optional[torch.device] = None,
|
| 649 |
+
):
|
| 650 |
+
"""
|
| 651 |
+
|
| 652 |
+
Args:
|
| 653 |
+
feat_shape: Spatial shape of the target tensor for embedding.
|
| 654 |
+
bands: Optional pre-generated frequency bands
|
| 655 |
+
dim: Output dimension of embedding tensor.
|
| 656 |
+
max_res: Maximum resolution for pixel mode.
|
| 657 |
+
temperature: Temperature (inv freq) for non-pixel mode
|
| 658 |
+
linear_bands: Linearly (instead of log) spaced bands for pixel mode
|
| 659 |
+
in_pixels: Pixel vs language (inv freq) mode.
|
| 660 |
+
dtype: Output dtype.
|
| 661 |
+
device: Output device.
|
| 662 |
+
|
| 663 |
+
Returns:
|
| 664 |
+
|
| 665 |
+
"""
|
| 666 |
+
sin_emb, cos_emb = build_fourier_pos_embed(
|
| 667 |
+
feat_shape,
|
| 668 |
+
bands=bands,
|
| 669 |
+
num_bands=dim // 4,
|
| 670 |
+
max_res=max_res,
|
| 671 |
+
temperature=temperature,
|
| 672 |
+
linear_bands=linear_bands,
|
| 673 |
+
in_pixels=in_pixels,
|
| 674 |
+
ref_feat_shape=ref_feat_shape,
|
| 675 |
+
device=device,
|
| 676 |
+
dtype=dtype,
|
| 677 |
+
)
|
| 678 |
+
num_spatial_dim = 1
|
| 679 |
+
# this would be much nicer as a .numel() call to torch.Size(), but torchscript sucks
|
| 680 |
+
for x in feat_shape:
|
| 681 |
+
num_spatial_dim *= x
|
| 682 |
+
sin_emb = sin_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
|
| 683 |
+
cos_emb = cos_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
|
| 684 |
+
return sin_emb, cos_emb
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
def freq_bands(
|
| 688 |
+
num_bands: int,
|
| 689 |
+
temperature: float = 10000.0,
|
| 690 |
+
step: int = 2,
|
| 691 |
+
device: Optional[torch.device] = None,
|
| 692 |
+
) -> torch.Tensor:
|
| 693 |
+
exp = torch.arange(0, num_bands, step, dtype=torch.int64, device=device).to(torch.float32) / num_bands
|
| 694 |
+
bands = 1.0 / (temperature**exp)
|
| 695 |
+
return bands
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
def pixel_freq_bands(
|
| 699 |
+
num_bands: int,
|
| 700 |
+
max_freq: float = 224.0,
|
| 701 |
+
linear_bands: bool = True,
|
| 702 |
+
device: Optional[torch.device] = None,
|
| 703 |
+
):
|
| 704 |
+
if linear_bands:
|
| 705 |
+
bands = torch.linspace(1.0, max_freq / 2, num_bands, dtype=torch.float32, device=device)
|
| 706 |
+
else:
|
| 707 |
+
bands = 2 ** torch.linspace(0, math.log(max_freq, 2) - 1, num_bands, dtype=torch.float32, device=device)
|
| 708 |
+
return bands * torch.pi
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
def rot(x):
|
| 712 |
+
return torch.stack([-x[..., 1::2], x[..., ::2]], -1).reshape(x.shape)
|
| 713 |
+
|
| 714 |
+
|
| 715 |
+
def apply_rot_embed_cat(x: torch.Tensor, emb):
|
| 716 |
+
sin_emb, cos_emb = emb.tensor_split(2, -1)
|
| 717 |
+
if sin_emb.ndim == 3:
|
| 718 |
+
return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x)
|
| 719 |
+
return x * cos_emb + rot(x) * sin_emb
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
# taken from https://github.com/huggingface/pytorch-image-models/blob/cb0e4391beedcc5ac3ae4bce16561b95c326f32c/timm/layers/pos_embed_sincos.py#L363
|
| 723 |
+
class NomicVisionRotaryEmbeddingCat(nn.Module):
|
| 724 |
+
"""Rotary position embedding w/ concatenatd sin & cos
|
| 725 |
+
|
| 726 |
+
The following impl/resources were referenced for this impl:
|
| 727 |
+
* https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py
|
| 728 |
+
* https://blog.eleuther.ai/rotary-embeddings/
|
| 729 |
+
"""
|
| 730 |
+
|
| 731 |
+
def __init__(
|
| 732 |
+
self,
|
| 733 |
+
dim,
|
| 734 |
+
max_res=224,
|
| 735 |
+
temperature=10000,
|
| 736 |
+
in_pixels=True,
|
| 737 |
+
linear_bands: bool = False,
|
| 738 |
+
feat_shape: Optional[List[int]] = None,
|
| 739 |
+
ref_feat_shape: Optional[List[int]] = None,
|
| 740 |
+
):
|
| 741 |
+
super().__init__()
|
| 742 |
+
self.dim = dim
|
| 743 |
+
self.max_res = max_res
|
| 744 |
+
self.temperature = temperature
|
| 745 |
+
self.in_pixels = in_pixels
|
| 746 |
+
self.feat_shape = feat_shape
|
| 747 |
+
self.ref_feat_shape = ref_feat_shape
|
| 748 |
+
|
| 749 |
+
if feat_shape is None:
|
| 750 |
+
# only cache bands
|
| 751 |
+
if in_pixels:
|
| 752 |
+
bands = pixel_freq_bands(
|
| 753 |
+
dim // 4,
|
| 754 |
+
float(max_res),
|
| 755 |
+
linear_bands=linear_bands,
|
| 756 |
+
)
|
| 757 |
+
else:
|
| 758 |
+
bands = freq_bands(
|
| 759 |
+
dim // 4,
|
| 760 |
+
temperature=temperature,
|
| 761 |
+
step=1,
|
| 762 |
+
)
|
| 763 |
+
self.register_buffer(
|
| 764 |
+
'bands',
|
| 765 |
+
bands,
|
| 766 |
+
persistent=False,
|
| 767 |
+
)
|
| 768 |
+
self.pos_embed = None
|
| 769 |
+
else:
|
| 770 |
+
# cache full sin/cos embeddings if shape provided up front
|
| 771 |
+
embeds = build_rotary_pos_embed(
|
| 772 |
+
feat_shape=feat_shape,
|
| 773 |
+
dim=dim,
|
| 774 |
+
max_res=max_res,
|
| 775 |
+
linear_bands=linear_bands,
|
| 776 |
+
in_pixels=in_pixels,
|
| 777 |
+
ref_feat_shape=self.ref_feat_shape,
|
| 778 |
+
)
|
| 779 |
+
self.bands = None
|
| 780 |
+
self.register_buffer(
|
| 781 |
+
'pos_embed',
|
| 782 |
+
torch.cat(embeds, -1),
|
| 783 |
+
persistent=False,
|
| 784 |
+
)
|
| 785 |
+
|
| 786 |
+
def get_embed(self, shape: Optional[List[int]] = None):
|
| 787 |
+
if self.bands is not None and shape is not None:
|
| 788 |
+
# rebuild embeddings every call, use if target shape changes
|
| 789 |
+
embeds = build_rotary_pos_embed(
|
| 790 |
+
shape,
|
| 791 |
+
self.bands,
|
| 792 |
+
in_pixels=self.in_pixels,
|
| 793 |
+
ref_feat_shape=self.ref_feat_shape,
|
| 794 |
+
)
|
| 795 |
+
return torch.cat(embeds, -1)
|
| 796 |
+
elif self.pos_embed is not None:
|
| 797 |
+
return self.pos_embed
|
| 798 |
+
else:
|
| 799 |
+
assert False, "get_embed() requires pre-computed pos_embed or valid shape w/ pre-computed bands"
|
| 800 |
+
|
| 801 |
+
def forward(self, x):
|
| 802 |
+
# assuming channel-first tensor where spatial dim are >= 2
|
| 803 |
+
pos_embed = self.get_embed(x.shape[2:])
|
| 804 |
+
return apply_rot_embed_cat(x, pos_embed)
|
| 805 |
+
|
| 806 |
+
|
| 807 |
+
class NomicVisionPatchEmbeddings(nn.Module):
|
| 808 |
+
def __init__(
|
| 809 |
+
self,
|
| 810 |
+
config,
|
| 811 |
+
):
|
| 812 |
+
super().__init__()
|
| 813 |
+
img_size = _pair(config.img_size)
|
| 814 |
+
patch_size = _pair(config.patch_size)
|
| 815 |
+
self.img_size = img_size
|
| 816 |
+
self.patch_size = patch_size
|
| 817 |
+
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
| 818 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
| 819 |
+
|
| 820 |
+
self.proj = nn.Linear(
|
| 821 |
+
config.num_channels * patch_size[0] * patch_size[1], config.n_embd, bias=config.patch_embed_bias
|
| 822 |
+
)
|
| 823 |
+
|
| 824 |
+
self.learned_pos_embedding = False
|
| 825 |
+
self.sinusoidal_pos_embedding = False
|
| 826 |
+
self.no_embed_class = getattr(config, "no_embed_class", False)
|
| 827 |
+
|
| 828 |
+
self.cls_token = (
|
| 829 |
+
nn.Parameter(torch.zeros(1, 1, config.n_embd)) if not getattr(config, "no_cls_token", False) else None
|
| 830 |
+
)
|
| 831 |
+
if config.learned_pos_embedding:
|
| 832 |
+
# this is the default in DINO
|
| 833 |
+
self.learned_pos_embedding = True
|
| 834 |
+
# hack for timm dinov2 with registers
|
| 835 |
+
num_patches = self.num_patches if getattr(config, "register_tokens", 0) > 0 else self.num_patches + 1
|
| 836 |
+
self.pos_embed = (
|
| 837 |
+
nn.Parameter(torch.randn(1, num_patches, config.n_embd) * 0.02)
|
| 838 |
+
if getattr(config, "use_pos_embed", True)
|
| 839 |
+
else None
|
| 840 |
+
)
|
| 841 |
+
elif getattr(config, "sinusoidal_pos_embedding", False):
|
| 842 |
+
self.sinusoidal_pos_embedding = True
|
| 843 |
+
if getattr(config, "use_pos_embed", True):
|
| 844 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, config.n_embd), requires_grad=False)
|
| 845 |
+
pos_embed = get_2d_sincos_pos_embed(config.n_embd, self.grid_size[0], add_cls_token=True)
|
| 846 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).to(self.pos_embed))
|
| 847 |
+
else:
|
| 848 |
+
self.pos_embed = None
|
| 849 |
+
else:
|
| 850 |
+
self.pos_embed = (
|
| 851 |
+
nn.Parameter(torch.randn(1, self.num_patches + 1, config.n_embd) * 0.02)
|
| 852 |
+
if getattr(config, "use_pos_embed", True)
|
| 853 |
+
else None
|
| 854 |
+
)
|
| 855 |
+
|
| 856 |
+
if getattr(config, "register_tokens", 0) > 0:
|
| 857 |
+
self.reg_token = nn.Parameter(torch.randn(1, config.register_tokens, config.n_embd) * 0.02)
|
| 858 |
+
else:
|
| 859 |
+
self.reg_token = None
|
| 860 |
+
|
| 861 |
+
if config.mask_token:
|
| 862 |
+
self.mask_token = nn.Parameter(torch.zeros(1, config.n_embd))
|
| 863 |
+
|
| 864 |
+
self.patch_dropout = nn.Identity()
|
| 865 |
+
|
| 866 |
+
if getattr(config, "use_rotary_pos_emb", False):
|
| 867 |
+
ref_feat_shape = getattr(config, "ref_feat_shape", None)
|
| 868 |
+
ref_feat_shape = to_2tuple(ref_feat_shape) if ref_feat_shape is not None else None
|
| 869 |
+
self.rope = NomicVisionRotaryEmbeddingCat(
|
| 870 |
+
config.n_embd // config.n_head,
|
| 871 |
+
in_pixels=False,
|
| 872 |
+
feat_shape=self.grid_size,
|
| 873 |
+
ref_feat_shape=ref_feat_shape,
|
| 874 |
+
)
|
| 875 |
+
else:
|
| 876 |
+
self.rope = None
|
| 877 |
+
|
| 878 |
+
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
| 879 |
+
"""
|
| 880 |
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
| 881 |
+
resolution images.
|
| 882 |
+
|
| 883 |
+
Source:
|
| 884 |
+
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
| 885 |
+
"""
|
| 886 |
+
num_patches = embeddings.shape[1] - 1
|
| 887 |
+
num_positions = self.pos_embed.shape[1] - 1
|
| 888 |
+
if num_patches == num_positions and height == width:
|
| 889 |
+
return self.pos_embed
|
| 890 |
+
class_pos_embed = self.pos_embed[:, 0]
|
| 891 |
+
patch_pos_embed = self.pos_embed[:, 1:]
|
| 892 |
+
dim = embeddings.shape[-1]
|
| 893 |
+
height = height // self.patch_size[0]
|
| 894 |
+
width = width // self.patch_size[1]
|
| 895 |
+
# we add a small number to avoid floating point error in the interpolation
|
| 896 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
| 897 |
+
height, width = height + 0.1, width + 0.1
|
| 898 |
+
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
|
| 899 |
+
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
| 900 |
+
patch_pos_embed = nn.functional.interpolate(
|
| 901 |
+
patch_pos_embed,
|
| 902 |
+
scale_factor=(height / math.sqrt(num_positions), width / math.sqrt(num_positions)),
|
| 903 |
+
mode="bicubic",
|
| 904 |
+
align_corners=False,
|
| 905 |
+
)
|
| 906 |
+
if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]:
|
| 907 |
+
raise ValueError("Width or height does not match with the interpolated position embeddings")
|
| 908 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
| 909 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
| 910 |
+
|
| 911 |
+
def forward(self, x):
|
| 912 |
+
# deepspeed case where the input is in fp32
|
| 913 |
+
if x.dtype != self.proj.weight.dtype:
|
| 914 |
+
x = x.to(dtype=self.proj.weight.dtype)
|
| 915 |
+
|
| 916 |
+
_, _, height, width = x.shape
|
| 917 |
+
x = self.proj(
|
| 918 |
+
rearrange(
|
| 919 |
+
x,
|
| 920 |
+
"b c (h p1) (w p2) -> b h w (c p1 p2)",
|
| 921 |
+
p1=self.patch_size[0],
|
| 922 |
+
p2=self.patch_size[1],
|
| 923 |
+
)
|
| 924 |
+
)
|
| 925 |
+
embeddings = rearrange(x, "b h w c -> b (h w) c")
|
| 926 |
+
|
| 927 |
+
to_cat = []
|
| 928 |
+
if self.cls_token is not None:
|
| 929 |
+
if self.sinusoidal_pos_embedding:
|
| 930 |
+
cls_token = self.cls_token + self.pos_embed[:, 0]
|
| 931 |
+
cls_token = cls_token.expand(embeddings.shape[0], -1, -1)
|
| 932 |
+
to_cat += [cls_token]
|
| 933 |
+
else:
|
| 934 |
+
cls_token = self.cls_token.expand(embeddings.shape[0], 1, -1)
|
| 935 |
+
to_cat += [cls_token]
|
| 936 |
+
|
| 937 |
+
if self.reg_token is not None:
|
| 938 |
+
to_cat += [self.reg_token.expand(embeddings.shape[0], -1, -1)]
|
| 939 |
+
|
| 940 |
+
rot_pos_embed = self.rope.get_embed() if self.rope is not None else None
|
| 941 |
+
|
| 942 |
+
if self.no_embed_class:
|
| 943 |
+
if self.learned_pos_embedding:
|
| 944 |
+
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
| 945 |
+
else:
|
| 946 |
+
if self.pos_embed is not None:
|
| 947 |
+
embeddings = embeddings + self.pos_embed
|
| 948 |
+
if to_cat:
|
| 949 |
+
embeddings = torch.cat(to_cat + [embeddings], dim=1)
|
| 950 |
+
else:
|
| 951 |
+
if to_cat:
|
| 952 |
+
embeddings = torch.cat(to_cat + [embeddings], dim=1)
|
| 953 |
+
if self.learned_pos_embedding:
|
| 954 |
+
if self.pos_embed is not None:
|
| 955 |
+
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
| 956 |
+
else:
|
| 957 |
+
if self.pos_embed is not None:
|
| 958 |
+
embeddings = embeddings + self.pos_embed
|
| 959 |
+
|
| 960 |
+
embeddings = self.patch_dropout(embeddings)
|
| 961 |
+
|
| 962 |
+
return embeddings, rot_pos_embed
|
| 963 |
+
|
| 964 |
+
|
| 965 |
+
class NomicBertEmbeddings(nn.Module):
|
| 966 |
+
def __init__(self, config):
|
| 967 |
+
"""
|
| 968 |
+
If max_position_embeddings <= 0, there's no position embeddings
|
| 969 |
+
If type_vocab_size <= 0, there's no token type embeddings
|
| 970 |
+
"""
|
| 971 |
+
super().__init__()
|
| 972 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
| 973 |
+
self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
|
| 974 |
+
self.type_vocab_size = config.type_vocab_size
|
| 975 |
+
if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
|
| 976 |
+
self.position_embeddings = nn.Embedding(
|
| 977 |
+
config.max_position_embeddings,
|
| 978 |
+
config.hidden_size,
|
| 979 |
+
)
|
| 980 |
+
if self.type_vocab_size > 0:
|
| 981 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
| 982 |
+
|
| 983 |
+
def forward(self, input_ids, position_ids=None, token_type_ids=None):
|
| 984 |
+
"""
|
| 985 |
+
input_ids: (batch, seqlen)
|
| 986 |
+
position_ids: (batch, seqlen)
|
| 987 |
+
token_type_ids: (batch, seqlen)
|
| 988 |
+
"""
|
| 989 |
+
batch_size, seqlen = input_ids.shape
|
| 990 |
+
embeddings = self.word_embeddings(input_ids)
|
| 991 |
+
|
| 992 |
+
if self.type_vocab_size > 0:
|
| 993 |
+
if token_type_ids is None:
|
| 994 |
+
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
| 995 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 996 |
+
embeddings = embeddings + token_type_embeddings
|
| 997 |
+
|
| 998 |
+
if self.max_position_embeddings > 0:
|
| 999 |
+
if position_ids is None:
|
| 1000 |
+
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
|
| 1001 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 1002 |
+
embeddings = embeddings + position_embeddings
|
| 1003 |
+
return embeddings
|
| 1004 |
+
|
| 1005 |
+
|
| 1006 |
+
class NomicBertMLP(nn.Module):
|
| 1007 |
+
def __init__(
|
| 1008 |
+
self,
|
| 1009 |
+
in_features,
|
| 1010 |
+
hidden_features=None,
|
| 1011 |
+
out_features=None,
|
| 1012 |
+
activation=F.gelu,
|
| 1013 |
+
bias1=True,
|
| 1014 |
+
bias2=True,
|
| 1015 |
+
return_residual=False,
|
| 1016 |
+
fused_bias_fc=False,
|
| 1017 |
+
):
|
| 1018 |
+
super().__init__()
|
| 1019 |
+
out_features = out_features if out_features is not None else in_features
|
| 1020 |
+
hidden_features = hidden_features if hidden_features is not None else in_features * 4
|
| 1021 |
+
self.return_residual = return_residual
|
| 1022 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
|
| 1023 |
+
approximate = "tanh" if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
| 1024 |
+
self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
|
| 1025 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
| 1026 |
+
|
| 1027 |
+
def forward(self, x):
|
| 1028 |
+
y = self.fc1(x)
|
| 1029 |
+
y = self.activation(y)
|
| 1030 |
+
y = self.fc2(y)
|
| 1031 |
+
return y if not self.return_residual else (y, x)
|
| 1032 |
+
|
| 1033 |
+
|
| 1034 |
+
class NomciBertGatedMLP(nn.Module):
|
| 1035 |
+
def __init__(
|
| 1036 |
+
self,
|
| 1037 |
+
in_features,
|
| 1038 |
+
hidden_features=None,
|
| 1039 |
+
out_features=None,
|
| 1040 |
+
activation=F.sigmoid,
|
| 1041 |
+
bias1=True,
|
| 1042 |
+
bias2=True,
|
| 1043 |
+
multiple_of=256,
|
| 1044 |
+
return_residual=False,
|
| 1045 |
+
fused_bias_fc=True,
|
| 1046 |
+
device=None,
|
| 1047 |
+
dtype=None,
|
| 1048 |
+
norm_layer=False,
|
| 1049 |
+
):
|
| 1050 |
+
super().__init__()
|
| 1051 |
+
out_features = out_features if out_features is not None else in_features
|
| 1052 |
+
hidden_features = hidden_features if hidden_features is not None else int(8 * in_features / 3)
|
| 1053 |
+
hidden_features = int((hidden_features + multiple_of - 1) // multiple_of * multiple_of)
|
| 1054 |
+
self.return_residual = return_residual
|
| 1055 |
+
|
| 1056 |
+
self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
|
| 1057 |
+
self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
|
| 1058 |
+
self.activation = activation
|
| 1059 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
| 1060 |
+
self.norm = nn.LayerNorm(hidden_features) if norm_layer else nn.Identity()
|
| 1061 |
+
|
| 1062 |
+
def forward(self, x):
|
| 1063 |
+
y = self.fc11(x)
|
| 1064 |
+
gate = self.fc12(x)
|
| 1065 |
+
if self.activation == F.sigmoid: # Special case for GLU
|
| 1066 |
+
y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
|
| 1067 |
+
else:
|
| 1068 |
+
y = y * self.activation(gate)
|
| 1069 |
+
|
| 1070 |
+
# eva uses layer norm after the activation
|
| 1071 |
+
y = self.norm(y)
|
| 1072 |
+
|
| 1073 |
+
y = self.fc2(y)
|
| 1074 |
+
return y if not self.return_residual else (y, x)
|
| 1075 |
+
|
| 1076 |
+
|
| 1077 |
+
def rotate_half(x, interleaved=False):
|
| 1078 |
+
if not interleaved:
|
| 1079 |
+
x1, x2 = x.chunk(2, dim=-1)
|
| 1080 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 1081 |
+
else:
|
| 1082 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
| 1083 |
+
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
|
| 1084 |
+
|
| 1085 |
+
|
| 1086 |
+
def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
|
| 1087 |
+
"""
|
| 1088 |
+
x: (batch_size, seqlen, nheads, headdim)
|
| 1089 |
+
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
| 1090 |
+
"""
|
| 1091 |
+
ro_dim = cos.shape[-1] * 2
|
| 1092 |
+
assert ro_dim <= x.shape[-1]
|
| 1093 |
+
cos, sin = (
|
| 1094 |
+
cos[offset : offset + x.shape[1]],
|
| 1095 |
+
sin[offset : offset + x.shape[1]],
|
| 1096 |
+
)
|
| 1097 |
+
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
| 1098 |
+
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
| 1099 |
+
return torch.cat(
|
| 1100 |
+
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
|
| 1101 |
+
dim=-1,
|
| 1102 |
+
)
|
| 1103 |
+
|
| 1104 |
+
|
| 1105 |
+
class NomicBertRotaryEmbedding(nn.Module):
|
| 1106 |
+
def __init__(
|
| 1107 |
+
self,
|
| 1108 |
+
dim: int,
|
| 1109 |
+
base=10000.0,
|
| 1110 |
+
interleaved=False,
|
| 1111 |
+
scale_base=None,
|
| 1112 |
+
pos_idx_in_fp32=True,
|
| 1113 |
+
device=None,
|
| 1114 |
+
):
|
| 1115 |
+
"""
|
| 1116 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
| 1117 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
| 1118 |
+
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
| 1119 |
+
otherwise they might be in lower precision.
|
| 1120 |
+
This option was added because previously (before 2023-07-02), when we construct
|
| 1121 |
+
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
| 1122 |
+
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
| 1123 |
+
self.inv_freq would be bf16, and the position indices are also in bf16.
|
| 1124 |
+
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
| 1125 |
+
embeddings for some positions will coincide.
|
| 1126 |
+
To maintain compatibility with models previously trained in pure bf16,
|
| 1127 |
+
we add this option.
|
| 1128 |
+
"""
|
| 1129 |
+
super().__init__()
|
| 1130 |
+
self.dim = dim
|
| 1131 |
+
self.base = float(base)
|
| 1132 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 1133 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
| 1134 |
+
inv_freq = self._compute_inv_freq(device)
|
| 1135 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 1136 |
+
self.interleaved = interleaved
|
| 1137 |
+
self.scale_base = scale_base
|
| 1138 |
+
scale = (
|
| 1139 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
| 1140 |
+
if scale_base is not None
|
| 1141 |
+
else None
|
| 1142 |
+
)
|
| 1143 |
+
self.register_buffer("scale", scale, persistent=False)
|
| 1144 |
+
|
| 1145 |
+
self._seq_len_cached = 0
|
| 1146 |
+
self._cos_cached = None
|
| 1147 |
+
self._sin_cached = None
|
| 1148 |
+
self._cos_k_cached = None
|
| 1149 |
+
self._sin_k_cached = None
|
| 1150 |
+
|
| 1151 |
+
def _compute_inv_freq(self, device=None):
|
| 1152 |
+
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
| 1153 |
+
|
| 1154 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
| 1155 |
+
# Reset the tables if the sequence length has changed,
|
| 1156 |
+
# if we're on a new device (possibly due to tracing for instance),
|
| 1157 |
+
# or if we're switching from inference mode to training
|
| 1158 |
+
if (
|
| 1159 |
+
seqlen > self._seq_len_cached
|
| 1160 |
+
or self._cos_cached is None
|
| 1161 |
+
or self._cos_cached.device != device
|
| 1162 |
+
or self._cos_cached.dtype != dtype
|
| 1163 |
+
or (self.training and self._cos_cached.is_inference())
|
| 1164 |
+
):
|
| 1165 |
+
self._seq_len_cached = seqlen
|
| 1166 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
| 1167 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
| 1168 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
| 1169 |
+
if self.pos_idx_in_fp32:
|
| 1170 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 1171 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
| 1172 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
| 1173 |
+
# cos & sin output to change significantly.
|
| 1174 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
| 1175 |
+
if self.inv_freq.dtype != torch.float32:
|
| 1176 |
+
inv_freq = self._compute_inv_freq(device=device)
|
| 1177 |
+
else:
|
| 1178 |
+
inv_freq = self.inv_freq
|
| 1179 |
+
else:
|
| 1180 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 1181 |
+
inv_freq = self.inv_freq
|
| 1182 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
| 1183 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 1184 |
+
freqs = torch.outer(t, inv_freq)
|
| 1185 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 1186 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 1187 |
+
|
| 1188 |
+
def forward(
|
| 1189 |
+
self,
|
| 1190 |
+
qkv: torch.Tensor,
|
| 1191 |
+
kv: Optional[torch.Tensor] = None,
|
| 1192 |
+
seqlen_offset: Union[int, torch.Tensor] = 0,
|
| 1193 |
+
max_seqlen: Optional[int] = None,
|
| 1194 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 1195 |
+
"""
|
| 1196 |
+
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
|
| 1197 |
+
else it's just q of shape (batch, seqlen, nheads, headdim)
|
| 1198 |
+
kv: (batch, seqlen, 2, nheads, headdim)
|
| 1199 |
+
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
| 1200 |
+
Most commonly used in inference when we have KV cache.
|
| 1201 |
+
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
| 1202 |
+
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
| 1203 |
+
Apply rotary embedding *inplace* to qkv and / or kv.
|
| 1204 |
+
"""
|
| 1205 |
+
seqlen = qkv.shape[1]
|
| 1206 |
+
if seqlen > self._seq_len_cached:
|
| 1207 |
+
self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
|
| 1208 |
+
elif max_seqlen is not None:
|
| 1209 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
| 1210 |
+
elif isinstance(seqlen_offset, int):
|
| 1211 |
+
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
| 1212 |
+
|
| 1213 |
+
q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
| 1214 |
+
k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
| 1215 |
+
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
| 1216 |
+
|
| 1217 |
+
|
| 1218 |
+
class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
|
| 1219 |
+
def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
|
| 1220 |
+
super().__init__(**kwargs)
|
| 1221 |
+
self.rotary_scaling_factor = rotary_scaling_factor
|
| 1222 |
+
self.max_position_embeddings = max_position_embeddings
|
| 1223 |
+
|
| 1224 |
+
def _compute_inv_freq(self, base=None, device=None):
|
| 1225 |
+
if base is None:
|
| 1226 |
+
base = self.base
|
| 1227 |
+
return 1.0 / (base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
| 1228 |
+
|
| 1229 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
| 1230 |
+
# Reset the tables if the sequence length has changed,
|
| 1231 |
+
# if we're on a new device (possibly due to tracing for instance),
|
| 1232 |
+
# or if we're switching from inference mode to training
|
| 1233 |
+
if seqlen > self.max_position_embeddings:
|
| 1234 |
+
base = self.base * (
|
| 1235 |
+
(self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
|
| 1236 |
+
) ** (self.dim / (self.dim - 2))
|
| 1237 |
+
inv_freq = self._compute_inv_freq(base=base, device=device)
|
| 1238 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 1239 |
+
|
| 1240 |
+
if (
|
| 1241 |
+
seqlen > self._seq_len_cached
|
| 1242 |
+
or self._cos_cached is None
|
| 1243 |
+
or self._cos_cached.device != device
|
| 1244 |
+
or self._cos_cached.dtype != dtype
|
| 1245 |
+
or (self.training and self._cos_cached.is_inference())
|
| 1246 |
+
):
|
| 1247 |
+
self._seq_len_cached = seqlen
|
| 1248 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
| 1249 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
| 1250 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
| 1251 |
+
if self.pos_idx_in_fp32:
|
| 1252 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 1253 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
| 1254 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
| 1255 |
+
# cos & sin output to change significantly.
|
| 1256 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
| 1257 |
+
if self.inv_freq.dtype != torch.float32:
|
| 1258 |
+
if seqlen > self.max_position_embeddings:
|
| 1259 |
+
base = self.base * (
|
| 1260 |
+
(self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 1261 |
+
) ** (self.dim / (self.dim - 2))
|
| 1262 |
+
else:
|
| 1263 |
+
base = self.base
|
| 1264 |
+
inv_freq = self._compute_inv_freq(device=device, base=base)
|
| 1265 |
+
else:
|
| 1266 |
+
inv_freq = self.inv_freq
|
| 1267 |
+
else:
|
| 1268 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 1269 |
+
inv_freq = self.inv_freq
|
| 1270 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
| 1271 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 1272 |
+
freqs = torch.outer(t, inv_freq)
|
| 1273 |
+
if self.scale is None:
|
| 1274 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 1275 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 1276 |
+
else:
|
| 1277 |
+
power = (
|
| 1278 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
| 1279 |
+
) / self.scale_base
|
| 1280 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
| 1281 |
+
# We want the multiplication by scale to happen in fp32
|
| 1282 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
| 1283 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
| 1284 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
| 1285 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
| 1286 |
+
|
| 1287 |
+
|
| 1288 |
+
class NomicBertAttention(nn.Module):
|
| 1289 |
+
"""Multi-head self-attention and cross-attention"""
|
| 1290 |
+
|
| 1291 |
+
def __init__(
|
| 1292 |
+
self,
|
| 1293 |
+
config,
|
| 1294 |
+
) -> None:
|
| 1295 |
+
"""
|
| 1296 |
+
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
|
| 1297 |
+
return_residual: whether to return the input x along with the output. This is for
|
| 1298 |
+
performance reason: for post-norm architecture, returning the input allows us
|
| 1299 |
+
to fuse the backward of nn.Linear with the residual connection.
|
| 1300 |
+
"""
|
| 1301 |
+
super().__init__()
|
| 1302 |
+
self.embed_dim = config.n_embd
|
| 1303 |
+
self.use_flash_attn = config.use_flash_attn
|
| 1304 |
+
self.fused_bias_fc = config.fused_bias_fc
|
| 1305 |
+
|
| 1306 |
+
self.num_heads = config.n_head
|
| 1307 |
+
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
|
| 1308 |
+
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
| 1309 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 1310 |
+
# we don't really support mqa / gqa for now
|
| 1311 |
+
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
| 1312 |
+
|
| 1313 |
+
self.register_buffer(
|
| 1314 |
+
"norm_factor",
|
| 1315 |
+
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
| 1316 |
+
persistent=False,
|
| 1317 |
+
)
|
| 1318 |
+
|
| 1319 |
+
self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
|
| 1320 |
+
if self.rotary_emb_dim > 0:
|
| 1321 |
+
if getattr(config, "rotary_scaling_factor", None):
|
| 1322 |
+
self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
|
| 1323 |
+
dim=self.rotary_emb_dim,
|
| 1324 |
+
base=config.rotary_emb_base,
|
| 1325 |
+
scale_base=config.rotary_emb_scale_base,
|
| 1326 |
+
interleaved=config.rotary_emb_interleaved,
|
| 1327 |
+
rotary_scaling_factor=config.rotary_scaling_factor,
|
| 1328 |
+
max_position_embeddings=config.max_trained_positions,
|
| 1329 |
+
)
|
| 1330 |
+
else:
|
| 1331 |
+
self.rotary_emb = NomicBertRotaryEmbedding(
|
| 1332 |
+
dim=self.rotary_emb_dim,
|
| 1333 |
+
base=config.rotary_emb_base,
|
| 1334 |
+
scale_base=config.rotary_emb_scale_base,
|
| 1335 |
+
interleaved=config.rotary_emb_interleaved,
|
| 1336 |
+
)
|
| 1337 |
+
# bug in xformers: https://github.com/facebookresearch/xformers/issues/841
|
| 1338 |
+
# uses the head dimension instead of the sequence dimension
|
| 1339 |
+
self.rotary_head_dim = getattr(config, "rotary_head_dim", False)
|
| 1340 |
+
|
| 1341 |
+
self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)
|
| 1342 |
+
|
| 1343 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
| 1344 |
+
self.causal = config.causal
|
| 1345 |
+
self.drop = nn.Dropout(config.attn_pdrop)
|
| 1346 |
+
self.num_prefix_tokens = max(getattr(config, "register_tokens", 1), 1)
|
| 1347 |
+
|
| 1348 |
+
def forward(
|
| 1349 |
+
self,
|
| 1350 |
+
hidden_states: torch.Tensor,
|
| 1351 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1352 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1353 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 1354 |
+
output_attentions: bool = False,
|
| 1355 |
+
use_cache: bool = False,
|
| 1356 |
+
is_padded_inputs: Optional[bool] = True,
|
| 1357 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 1358 |
+
max_seq_len: Optional[int] = None,
|
| 1359 |
+
rope: Optional[torch.Tensor] = None,
|
| 1360 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 1361 |
+
|
| 1362 |
+
has_layer_past = past_key_value is not None
|
| 1363 |
+
|
| 1364 |
+
if has_layer_past:
|
| 1365 |
+
past_key_value = past_key_value[0]
|
| 1366 |
+
past_len = past_key_value[1]
|
| 1367 |
+
else:
|
| 1368 |
+
past_len = 0
|
| 1369 |
+
|
| 1370 |
+
qkv = self.Wqkv(hidden_states)
|
| 1371 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
| 1372 |
+
|
| 1373 |
+
past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None
|
| 1374 |
+
|
| 1375 |
+
if self.rotary_emb_dim > 0:
|
| 1376 |
+
if self.rotary_head_dim:
|
| 1377 |
+
qkv = rearrange(qkv, "b s three h d -> b h three s d")
|
| 1378 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=past_len)
|
| 1379 |
+
|
| 1380 |
+
if self.rotary_head_dim:
|
| 1381 |
+
qkv = rearrange(qkv, "b h three s d -> b s three h d")
|
| 1382 |
+
elif rope is not None:
|
| 1383 |
+
q, k, v = qkv.permute(0, 3, 1, 2, 4).unbind(dim=-2)
|
| 1384 |
+
q = torch.cat(
|
| 1385 |
+
[q[:, :, : self.num_prefix_tokens], apply_rot_embed_cat(q[:, :, self.num_prefix_tokens :], rope)], dim=2
|
| 1386 |
+
).type_as(q)
|
| 1387 |
+
k = torch.cat(
|
| 1388 |
+
[k[:, :, : self.num_prefix_tokens], apply_rot_embed_cat(k[:, :, self.num_prefix_tokens :], rope)], dim=2
|
| 1389 |
+
).type_as(q)
|
| 1390 |
+
|
| 1391 |
+
qkv = torch.stack([q, k, v], dim=-2)
|
| 1392 |
+
qkv = rearrange(qkv, "b h s three d -> b s three h d")
|
| 1393 |
+
|
| 1394 |
+
query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
|
| 1395 |
+
|
| 1396 |
+
query = query.permute(0, 2, 1, 3)
|
| 1397 |
+
key = key.permute(0, 2, 1, 3)
|
| 1398 |
+
value = value.permute(0, 2, 1, 3)
|
| 1399 |
+
if scaled_dot_product_attention is not None:
|
| 1400 |
+
attn_output = F.scaled_dot_product_attention(
|
| 1401 |
+
query, key, value, attn_mask=attention_mask, dropout_p=self.drop.p, is_causal=False
|
| 1402 |
+
)
|
| 1403 |
+
else:
|
| 1404 |
+
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
|
| 1405 |
+
if attention_mask is not None:
|
| 1406 |
+
attention_scores = attention_scores + attention_mask
|
| 1407 |
+
|
| 1408 |
+
attentions_probs = F.softmax(attention_scores, dim=-1)
|
| 1409 |
+
attentions_probs = self.drop(attentions_probs)
|
| 1410 |
+
|
| 1411 |
+
attn_output = torch.matmul(attentions_probs, value)
|
| 1412 |
+
|
| 1413 |
+
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
|
| 1414 |
+
|
| 1415 |
+
attn_output = self.out_proj(attn_output)
|
| 1416 |
+
|
| 1417 |
+
return attn_output
|
| 1418 |
+
|
| 1419 |
+
|
| 1420 |
+
class NomicBertBlock(NomicBertPreTrainedModel):
|
| 1421 |
+
def __init__(
|
| 1422 |
+
self,
|
| 1423 |
+
config,
|
| 1424 |
+
):
|
| 1425 |
+
super().__init__(config=config)
|
| 1426 |
+
self.prenorm = config.prenorm
|
| 1427 |
+
self.fused_dropout_add_ln = config.fused_dropout_add_ln
|
| 1428 |
+
|
| 1429 |
+
self.attn = NomicBertAttention(config)
|
| 1430 |
+
activation = (
|
| 1431 |
+
F.sigmoid
|
| 1432 |
+
if config.activation_function == "glu"
|
| 1433 |
+
else (F.silu if config.activation_function == "swiglu" else F.gelu)
|
| 1434 |
+
)
|
| 1435 |
+
if config.activation_function in ["glu", "swiglu", "geglu"]:
|
| 1436 |
+
self.mlp = NomciBertGatedMLP(
|
| 1437 |
+
config.n_embd,
|
| 1438 |
+
hidden_features=config.n_inner,
|
| 1439 |
+
bias1=config.mlp_fc1_bias,
|
| 1440 |
+
bias2=config.mlp_fc2_bias,
|
| 1441 |
+
activation=activation,
|
| 1442 |
+
fused_bias_fc=config.fused_bias_fc,
|
| 1443 |
+
norm_layer=getattr(config, "norm_mlp", False),
|
| 1444 |
+
)
|
| 1445 |
+
else:
|
| 1446 |
+
self.mlp = NomicBertMLP(
|
| 1447 |
+
config.n_embd,
|
| 1448 |
+
hidden_features=config.n_inner,
|
| 1449 |
+
bias1=config.mlp_fc1_bias,
|
| 1450 |
+
bias2=config.mlp_fc2_bias,
|
| 1451 |
+
activation=activation,
|
| 1452 |
+
fused_bias_fc=config.fused_bias_fc,
|
| 1453 |
+
)
|
| 1454 |
+
|
| 1455 |
+
self.dropout1 = nn.Dropout(config.resid_pdrop)
|
| 1456 |
+
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 1457 |
+
self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 1458 |
+
self.dropout2 = nn.Dropout(config.resid_pdrop)
|
| 1459 |
+
|
| 1460 |
+
def forward(
|
| 1461 |
+
self,
|
| 1462 |
+
hidden_states: torch.Tensor,
|
| 1463 |
+
hidden_states2: torch.Tensor,
|
| 1464 |
+
residual: Optional[torch.Tensor] = None,
|
| 1465 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1466 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1467 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 1468 |
+
is_padded_inputs: Optional[bool] = True,
|
| 1469 |
+
output_attentions: Optional[bool] = False,
|
| 1470 |
+
use_cache: Optional[bool] = False,
|
| 1471 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 1472 |
+
max_seq_len: Optional[int] = None,
|
| 1473 |
+
rope: Optional[torch.Tensor] = None,
|
| 1474 |
+
):
|
| 1475 |
+
r"""Pass the input through the encoder layer.
|
| 1476 |
+
|
| 1477 |
+
Args:
|
| 1478 |
+
hidden_states: the sequence to the encoder layer (required).
|
| 1479 |
+
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
| 1480 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
| 1481 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
| 1482 |
+
about the CLS token in the last layer.
|
| 1483 |
+
"""
|
| 1484 |
+
if self.prenorm:
|
| 1485 |
+
dropped = self.dropout1(hidden_states)
|
| 1486 |
+
residual = (dropped + residual) if residual is not None else dropped
|
| 1487 |
+
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
| 1488 |
+
hidden_states = self.attn(
|
| 1489 |
+
hidden_states,
|
| 1490 |
+
attention_mask=attention_mask,
|
| 1491 |
+
is_padded_inputs=is_padded_inputs,
|
| 1492 |
+
cu_seqlens=cu_seqlens,
|
| 1493 |
+
max_seq_len=max_seq_len,
|
| 1494 |
+
rope=rope,
|
| 1495 |
+
)
|
| 1496 |
+
|
| 1497 |
+
dropped = self.dropout2(hidden_states)
|
| 1498 |
+
residual = (dropped + residual) if residual is not None else dropped
|
| 1499 |
+
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
|
| 1500 |
+
hidden_states = self.mlp(hidden_states)
|
| 1501 |
+
|
| 1502 |
+
return hidden_states, None, residual
|
| 1503 |
+
else:
|
| 1504 |
+
assert residual is None
|
| 1505 |
+
attn_outputs = self.attn(
|
| 1506 |
+
hidden_states,
|
| 1507 |
+
attention_mask=attention_mask,
|
| 1508 |
+
is_padded_inputs=is_padded_inputs,
|
| 1509 |
+
cu_seqlens=cu_seqlens,
|
| 1510 |
+
max_seq_len=max_seq_len,
|
| 1511 |
+
rope=rope,
|
| 1512 |
+
)
|
| 1513 |
+
hidden_states = self.norm1((self.dropout1(attn_outputs) + hidden_states).to(dtype=self.norm1.weight.dtype))
|
| 1514 |
+
mlp_out = self.mlp(hidden_states)
|
| 1515 |
+
|
| 1516 |
+
hidden_states = self.norm2((self.dropout2(mlp_out) + hidden_states).to(dtype=self.norm2.weight.dtype))
|
| 1517 |
+
return hidden_states, None, None
|
| 1518 |
+
|
| 1519 |
+
|
| 1520 |
+
class NomicBertEncoder(nn.Module):
|
| 1521 |
+
def __init__(self, config: GPT2Config):
|
| 1522 |
+
super().__init__()
|
| 1523 |
+
self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
|
| 1524 |
+
self.gradient_checkpointing = False
|
| 1525 |
+
self.config = config
|
| 1526 |
+
|
| 1527 |
+
def forward(
|
| 1528 |
+
self,
|
| 1529 |
+
hidden_states: torch.LongTensor = None,
|
| 1530 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1531 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1532 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1533 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1534 |
+
use_cache: Optional[bool] = None,
|
| 1535 |
+
output_attentions: Optional[bool] = None,
|
| 1536 |
+
output_hidden_states: Optional[bool] = None,
|
| 1537 |
+
return_dict: Optional[bool] = None,
|
| 1538 |
+
is_padded_inputs: Optional[bool] = True,
|
| 1539 |
+
rope: Optional[torch.Tensor] = None,
|
| 1540 |
+
):
|
| 1541 |
+
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
| 1542 |
+
This means that we only compute the last layer output for these tokens.
|
| 1543 |
+
subset_mask: (batch, seqlen), dtype=torch.bool
|
| 1544 |
+
"""
|
| 1545 |
+
hidden_states2 = None
|
| 1546 |
+
residual = None
|
| 1547 |
+
|
| 1548 |
+
for _, layer in enumerate(self.layers):
|
| 1549 |
+
if self.gradient_checkpointing and self.training:
|
| 1550 |
+
|
| 1551 |
+
def create_custom_forward(module):
|
| 1552 |
+
def custom_forward(*inputs):
|
| 1553 |
+
# None for past_key_value
|
| 1554 |
+
return module(*inputs)
|
| 1555 |
+
|
| 1556 |
+
return custom_forward
|
| 1557 |
+
|
| 1558 |
+
hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
|
| 1559 |
+
create_custom_forward(layer),
|
| 1560 |
+
hidden_states,
|
| 1561 |
+
hidden_states2,
|
| 1562 |
+
residual,
|
| 1563 |
+
attention_mask,
|
| 1564 |
+
position_ids,
|
| 1565 |
+
past_key_values,
|
| 1566 |
+
is_padded_inputs,
|
| 1567 |
+
output_attentions,
|
| 1568 |
+
use_cache,
|
| 1569 |
+
None,
|
| 1570 |
+
None,
|
| 1571 |
+
rope,
|
| 1572 |
+
# if you freeze ANY layers, you need `use_reentrant=False`
|
| 1573 |
+
# https://github.com/huggingface/transformers/issues/21381
|
| 1574 |
+
# https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
|
| 1575 |
+
use_reentrant=False,
|
| 1576 |
+
)
|
| 1577 |
+
|
| 1578 |
+
else:
|
| 1579 |
+
hidden_states, hidden_states2, residual = layer(
|
| 1580 |
+
hidden_states,
|
| 1581 |
+
hidden_states2,
|
| 1582 |
+
residual,
|
| 1583 |
+
attention_mask,
|
| 1584 |
+
position_ids,
|
| 1585 |
+
None,
|
| 1586 |
+
is_padded_inputs,
|
| 1587 |
+
output_attentions,
|
| 1588 |
+
use_cache,
|
| 1589 |
+
rope=rope,
|
| 1590 |
+
)
|
| 1591 |
+
return hidden_states
|
| 1592 |
+
|
| 1593 |
+
|
| 1594 |
+
class NomicBertPooler(nn.Module):
|
| 1595 |
+
def __init__(self, config):
|
| 1596 |
+
super().__init__()
|
| 1597 |
+
self.dense = nn.Linear(config.n_embd, config.n_embd)
|
| 1598 |
+
self.activation = nn.Tanh()
|
| 1599 |
+
|
| 1600 |
+
def forward(self, hidden_states, pool=True):
|
| 1601 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 1602 |
+
# to the first token.
|
| 1603 |
+
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
| 1604 |
+
pooled_output = self.dense(first_token_tensor)
|
| 1605 |
+
pooled_output = self.activation(pooled_output)
|
| 1606 |
+
return pooled_output
|
| 1607 |
+
|
| 1608 |
+
|
| 1609 |
+
class NomicBertPredictionHeadTransform(nn.Module):
|
| 1610 |
+
def __init__(self, config):
|
| 1611 |
+
super().__init__()
|
| 1612 |
+
self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
|
| 1613 |
+
approximate = "tanh" if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
| 1614 |
+
if config.activation_function == "swiglu":
|
| 1615 |
+
self.transform_act_fn = F.silu
|
| 1616 |
+
else:
|
| 1617 |
+
self.transform_act_fn = nn.GELU(approximate=approximate)
|
| 1618 |
+
|
| 1619 |
+
self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 1620 |
+
|
| 1621 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 1622 |
+
hidden_states = self.dense(hidden_states)
|
| 1623 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
| 1624 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 1625 |
+
|
| 1626 |
+
return hidden_states
|
| 1627 |
+
|
| 1628 |
+
|
| 1629 |
+
class NomicBertLMPredictionHead(nn.Module):
|
| 1630 |
+
def __init__(self, config):
|
| 1631 |
+
super().__init__()
|
| 1632 |
+
|
| 1633 |
+
self.transform = NomicBertPredictionHeadTransform(config)
|
| 1634 |
+
|
| 1635 |
+
self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)
|
| 1636 |
+
|
| 1637 |
+
def forward(self, hidden_states):
|
| 1638 |
+
hidden_states = self.transform(hidden_states)
|
| 1639 |
+
hidden_states = self.decoder(hidden_states)
|
| 1640 |
+
return hidden_states
|
| 1641 |
+
|
| 1642 |
+
|
| 1643 |
+
class NomicBertPreTrainingHeads(nn.Module):
|
| 1644 |
+
def __init__(self, config):
|
| 1645 |
+
super().__init__()
|
| 1646 |
+
self.predictions = NomicBertLMPredictionHead(config)
|
| 1647 |
+
|
| 1648 |
+
def forward(self, sequence_output):
|
| 1649 |
+
prediction_scores = self.predictions(sequence_output)
|
| 1650 |
+
return prediction_scores
|
| 1651 |
+
|
| 1652 |
+
|
| 1653 |
+
class NomicBertModel(NomicBertPreTrainedModel):
|
| 1654 |
+
def __init__(self, config: GPT2Config, add_pooling_layer=True):
|
| 1655 |
+
super().__init__(config)
|
| 1656 |
+
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
| 1657 |
+
if config.vocab_size % self.pad_vocab_size_multiple != 0:
|
| 1658 |
+
config.vocab_size += self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple)
|
| 1659 |
+
|
| 1660 |
+
assert config.activation_function in [
|
| 1661 |
+
"gelu",
|
| 1662 |
+
"gelu_new",
|
| 1663 |
+
"gelu_fast",
|
| 1664 |
+
"gelu_pytorch_tanh",
|
| 1665 |
+
"swiglu",
|
| 1666 |
+
"geglu",
|
| 1667 |
+
"glu",
|
| 1668 |
+
]
|
| 1669 |
+
|
| 1670 |
+
self.embeddings = NomicBertEmbeddings(config)
|
| 1671 |
+
self.emb_drop = nn.Dropout(config.resid_pdrop)
|
| 1672 |
+
self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 1673 |
+
self.encoder = NomicBertEncoder(config)
|
| 1674 |
+
self.pooler = NomicBertPooler(config) if add_pooling_layer else None
|
| 1675 |
+
|
| 1676 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
| 1677 |
+
|
| 1678 |
+
def forward(
|
| 1679 |
+
self,
|
| 1680 |
+
input_ids,
|
| 1681 |
+
attention_mask=None,
|
| 1682 |
+
position_ids=None,
|
| 1683 |
+
token_type_ids=None,
|
| 1684 |
+
return_dict=None,
|
| 1685 |
+
matryoshka_dim=None,
|
| 1686 |
+
):
|
| 1687 |
+
if token_type_ids is None:
|
| 1688 |
+
token_type_ids = torch.zeros_like(input_ids)
|
| 1689 |
+
hidden_states = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
|
| 1690 |
+
hidden_states = self.emb_ln(hidden_states)
|
| 1691 |
+
hidden_states = self.emb_drop(hidden_states)
|
| 1692 |
+
|
| 1693 |
+
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
|
| 1694 |
+
sequence_output = self.encoder(hidden_states, attention_mask=attention_mask, return_dict=return_dict)
|
| 1695 |
+
|
| 1696 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 1697 |
+
|
| 1698 |
+
if matryoshka_dim:
|
| 1699 |
+
sequence_output = sequence_output[:, :matryoshka_dim]
|
| 1700 |
+
|
| 1701 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 1702 |
+
last_hidden_state=sequence_output,
|
| 1703 |
+
pooler_output=pooled_output,
|
| 1704 |
+
)
|
| 1705 |
+
|
| 1706 |
+
|
| 1707 |
+
class NomicBertForPreTraining(NomicBertPreTrainedModel):
|
| 1708 |
+
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
| 1709 |
+
|
| 1710 |
+
def __init__(self, config: GPT2Config):
|
| 1711 |
+
super().__init__(config)
|
| 1712 |
+
|
| 1713 |
+
self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
|
| 1714 |
+
self.cls = NomicBertPreTrainingHeads(config)
|
| 1715 |
+
self.mlm_loss = nn.CrossEntropyLoss()
|
| 1716 |
+
|
| 1717 |
+
# Initialize weights and apply final processing
|
| 1718 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
| 1719 |
+
self.tie_weights()
|
| 1720 |
+
|
| 1721 |
+
def tie_weights(self):
|
| 1722 |
+
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
|
| 1723 |
+
|
| 1724 |
+
def forward(
|
| 1725 |
+
self,
|
| 1726 |
+
input_ids,
|
| 1727 |
+
position_ids=None,
|
| 1728 |
+
token_type_ids=None,
|
| 1729 |
+
attention_mask=None,
|
| 1730 |
+
labels=None,
|
| 1731 |
+
):
|
| 1732 |
+
"""
|
| 1733 |
+
If labels are provided, they must be -100 for masked out tokens (as specified in the attention
|
| 1734 |
+
mask).
|
| 1735 |
+
Outputs:
|
| 1736 |
+
if `labels` and `next_sentence_label` are not `None`:
|
| 1737 |
+
Outputs the total_loss which is the sum of the masked language modeling loss and the next
|
| 1738 |
+
sentence classification loss.
|
| 1739 |
+
if `labels` or `next_sentence_label` is `None`:
|
| 1740 |
+
Outputs a tuple comprising
|
| 1741 |
+
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
|
| 1742 |
+
- the next sentence classification logits of shape [batch_size, 2].
|
| 1743 |
+
|
| 1744 |
+
"""
|
| 1745 |
+
outputs = self.bert(
|
| 1746 |
+
input_ids,
|
| 1747 |
+
position_ids=position_ids,
|
| 1748 |
+
token_type_ids=token_type_ids,
|
| 1749 |
+
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
| 1750 |
+
)
|
| 1751 |
+
sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output
|
| 1752 |
+
|
| 1753 |
+
prediction_scores = self.cls(sequence_output)
|
| 1754 |
+
|
| 1755 |
+
total_loss = None
|
| 1756 |
+
if labels is not None:
|
| 1757 |
+
masked_lm_loss = self.mlm_loss(
|
| 1758 |
+
rearrange(prediction_scores, "... v -> (...) v"),
|
| 1759 |
+
rearrange(labels, "... -> (...)"),
|
| 1760 |
+
)
|
| 1761 |
+
total_loss = masked_lm_loss.float()
|
| 1762 |
+
|
| 1763 |
+
return MaskedLMOutput(
|
| 1764 |
+
loss=total_loss,
|
| 1765 |
+
logits=prediction_scores,
|
| 1766 |
+
hidden_states=outputs.hidden_states,
|
| 1767 |
+
attentions=None,
|
| 1768 |
+
)
|
| 1769 |
+
|
| 1770 |
+
|
| 1771 |
+
class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
|
| 1772 |
+
def __init__(self, config):
|
| 1773 |
+
super().__init__(config)
|
| 1774 |
+
self.num_labels = config.num_labels
|
| 1775 |
+
self.config = config
|
| 1776 |
+
|
| 1777 |
+
self.bert = NomicBertModel(config)
|
| 1778 |
+
classifier_dropout = getattr(config, "classifier_dropout", config.embd_pdrop)
|
| 1779 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1780 |
+
self.classifier = nn.Linear(config.n_embd, config.num_labels)
|
| 1781 |
+
|
| 1782 |
+
# Initialize weights and apply final processing
|
| 1783 |
+
self.post_init()
|
| 1784 |
+
|
| 1785 |
+
def forward(
|
| 1786 |
+
self,
|
| 1787 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1788 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1789 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1790 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1791 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1792 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1793 |
+
labels: Optional[torch.Tensor] = None,
|
| 1794 |
+
output_attentions: Optional[bool] = None,
|
| 1795 |
+
output_hidden_states: Optional[bool] = None,
|
| 1796 |
+
return_dict: Optional[bool] = None,
|
| 1797 |
+
):
|
| 1798 |
+
r"""
|
| 1799 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1800 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1801 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1802 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1803 |
+
"""
|
| 1804 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1805 |
+
outputs = self.bert(
|
| 1806 |
+
input_ids,
|
| 1807 |
+
position_ids=position_ids,
|
| 1808 |
+
token_type_ids=token_type_ids,
|
| 1809 |
+
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
| 1810 |
+
)
|
| 1811 |
+
|
| 1812 |
+
pooled_output = outputs[1]
|
| 1813 |
+
|
| 1814 |
+
pooled_output = self.dropout(pooled_output)
|
| 1815 |
+
logits = self.classifier(pooled_output)
|
| 1816 |
+
|
| 1817 |
+
loss = None
|
| 1818 |
+
if labels is not None:
|
| 1819 |
+
if self.config.problem_type is None:
|
| 1820 |
+
if self.num_labels == 1:
|
| 1821 |
+
self.config.problem_type = "regression"
|
| 1822 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1823 |
+
self.config.problem_type = "single_label_classification"
|
| 1824 |
+
else:
|
| 1825 |
+
self.config.problem_type = "multi_label_classification"
|
| 1826 |
+
|
| 1827 |
+
if self.config.problem_type == "regression":
|
| 1828 |
+
loss_fct = nn.MSELoss()
|
| 1829 |
+
if self.num_labels == 1:
|
| 1830 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1831 |
+
else:
|
| 1832 |
+
loss = loss_fct(logits, labels)
|
| 1833 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1834 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1835 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1836 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1837 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
| 1838 |
+
loss = loss_fct(logits, labels)
|
| 1839 |
+
if not return_dict:
|
| 1840 |
+
output = (logits,) + outputs[2:]
|
| 1841 |
+
return ((loss,) + output) if loss is not None else output
|
| 1842 |
+
|
| 1843 |
+
return SequenceClassifierOutput(
|
| 1844 |
+
loss=loss,
|
| 1845 |
+
logits=logits,
|
| 1846 |
+
hidden_states=outputs.hidden_states,
|
| 1847 |
+
attentions=outputs.attentions,
|
| 1848 |
+
)
|
| 1849 |
+
|
| 1850 |
+
|
| 1851 |
+
def hf_vit_config_to_vit_config(vit_config: ViTConfig) -> GPT2Config:
|
| 1852 |
+
return GPT2Config(
|
| 1853 |
+
n_embd=vit_config.hidden_size,
|
| 1854 |
+
n_layer=vit_config.num_hidden_layers,
|
| 1855 |
+
n_head=vit_config.num_attention_heads,
|
| 1856 |
+
n_inner=vit_config.intermediate_size,
|
| 1857 |
+
activation_function=vit_config.hidden_act,
|
| 1858 |
+
vocab_size=0, # no vocab since using patches
|
| 1859 |
+
n_positions=0, # No absolute position embedding
|
| 1860 |
+
resid_pdrop=0.0, # No dropout
|
| 1861 |
+
embd_pdrop=getattr(vit_config, "dropout", 0.0),
|
| 1862 |
+
attn_pdrop=vit_config.attention_probs_dropout_prob,
|
| 1863 |
+
layer_norm_epsilon=vit_config.layer_norm_eps,
|
| 1864 |
+
initializer_range=vit_config.initializer_range,
|
| 1865 |
+
bos_token_id=None,
|
| 1866 |
+
eos_token_id=None,
|
| 1867 |
+
# These are new arguments not in the original GPT2Config
|
| 1868 |
+
drop_path_rate=0.0,
|
| 1869 |
+
# Why is there double layer norm??
|
| 1870 |
+
prepre_layernom=False,
|
| 1871 |
+
layer_scale=False,
|
| 1872 |
+
layer_scale_init=None,
|
| 1873 |
+
img_size=vit_config.image_size,
|
| 1874 |
+
patch_size=vit_config.patch_size,
|
| 1875 |
+
num_channels=vit_config.num_channels,
|
| 1876 |
+
prenorm=True,
|
| 1877 |
+
parallel_block=False,
|
| 1878 |
+
parallel_block_tied_norm=False,
|
| 1879 |
+
rotary_emb_fraction=0,
|
| 1880 |
+
tie_word_embeddings=False,
|
| 1881 |
+
fused_dropout_add_ln=True,
|
| 1882 |
+
fused_bias_fc=True,
|
| 1883 |
+
patch_embed_bias=True,
|
| 1884 |
+
use_flash_attn=True,
|
| 1885 |
+
qkv_proj_bias=True,
|
| 1886 |
+
mlp_fc1_bias=getattr(vit_config, "mlp_fc1_bias", True),
|
| 1887 |
+
mlp_fc2_bias=getattr(vit_config, "mlp_fc2_bias", True),
|
| 1888 |
+
use_rms_norm=False,
|
| 1889 |
+
causal=False,
|
| 1890 |
+
hidden_features_scaling_factor=1.0,
|
| 1891 |
+
mask_token=False,
|
| 1892 |
+
learned_pos_embedding=False,
|
| 1893 |
+
patch_dropout=0,
|
| 1894 |
+
sinusoidal_pos_embedding=vit_config.model_type == "vit_mae",
|
| 1895 |
+
)
|
| 1896 |
+
|
| 1897 |
+
|
| 1898 |
+
class NomicAttentionPooling(nn.Module):
|
| 1899 |
+
def __init__(self, config):
|
| 1900 |
+
super().__init__()
|
| 1901 |
+
self.embed_dim = config.n_embd
|
| 1902 |
+
self.use_flash_attn = config.use_flash_attn
|
| 1903 |
+
self.fused_bias_fc = config.fused_bias_fc
|
| 1904 |
+
|
| 1905 |
+
self.num_heads = config.n_head
|
| 1906 |
+
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
|
| 1907 |
+
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
| 1908 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 1909 |
+
# we don't really support mqa / gqa for now
|
| 1910 |
+
kv_dim = 2 * self.head_dim * self.num_heads_kv
|
| 1911 |
+
|
| 1912 |
+
self.register_buffer(
|
| 1913 |
+
"norm_factor",
|
| 1914 |
+
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
| 1915 |
+
persistent=False,
|
| 1916 |
+
)
|
| 1917 |
+
|
| 1918 |
+
self.Wq = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
| 1919 |
+
self.Wkv = nn.Linear(self.embed_dim, kv_dim, bias=config.qkv_proj_bias)
|
| 1920 |
+
|
| 1921 |
+
self.latent = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
|
| 1922 |
+
|
| 1923 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
| 1924 |
+
self.causal = config.causal
|
| 1925 |
+
self.drop = nn.Dropout(config.attn_pdrop)
|
| 1926 |
+
|
| 1927 |
+
def init_weights(self):
|
| 1928 |
+
trunc_normal_tf_(self.latent, std=self.embed_dim**-0.5)
|
| 1929 |
+
|
| 1930 |
+
def forward(
|
| 1931 |
+
self,
|
| 1932 |
+
kv,
|
| 1933 |
+
attention_mask=None,
|
| 1934 |
+
cu_seqlens_k=None,
|
| 1935 |
+
max_seqlen_k=None,
|
| 1936 |
+
is_padded_inputs: Optional[bool] = True,
|
| 1937 |
+
output_attentions: bool = False,
|
| 1938 |
+
):
|
| 1939 |
+
"""Implements the multihead softmax attention.
|
| 1940 |
+
Arguments
|
| 1941 |
+
---------
|
| 1942 |
+
q: The tensor containing the query. (B, Sq, H, D)
|
| 1943 |
+
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
|
| 1944 |
+
causal: if passed, will override self.causal
|
| 1945 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
| 1946 |
+
of the sequences in the batch, used to index into q.
|
| 1947 |
+
max_seqlen: int. Maximum sequence length in the batch of q.
|
| 1948 |
+
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
| 1949 |
+
of the sequences in the batch, used to index into kv.
|
| 1950 |
+
max_seqlen_k: int. Maximum sequence length in the batch of k and v.
|
| 1951 |
+
"""
|
| 1952 |
+
q_latent = self.latent.expand(kv.size(0), -1, -1)
|
| 1953 |
+
q = self.Wq(q_latent)
|
| 1954 |
+
bsz, q_len, h_size = q.shape
|
| 1955 |
+
kv = self.Wkv(kv)
|
| 1956 |
+
query = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
| 1957 |
+
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
| 1958 |
+
|
| 1959 |
+
key, value = kv[:, :, 0], kv[:, :, 1]
|
| 1960 |
+
|
| 1961 |
+
query = query.permute(0, 2, 1, 3)
|
| 1962 |
+
key = key.permute(0, 2, 1, 3)
|
| 1963 |
+
value = value.permute(0, 2, 1, 3)
|
| 1964 |
+
|
| 1965 |
+
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
|
| 1966 |
+
if attention_mask is not None:
|
| 1967 |
+
attention_scores = attention_scores + attention_mask
|
| 1968 |
+
|
| 1969 |
+
attentions_probs = F.softmax(attention_scores, dim=-1)
|
| 1970 |
+
attentions_probs = self.drop(attentions_probs)
|
| 1971 |
+
|
| 1972 |
+
attn_output = torch.matmul(attentions_probs, value)
|
| 1973 |
+
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
|
| 1974 |
+
|
| 1975 |
+
attn_output = self.out_proj(attn_output)
|
| 1976 |
+
|
| 1977 |
+
return attn_output
|
| 1978 |
+
|
| 1979 |
+
|
| 1980 |
+
class NomicMultiHeadAttentionPooling(nn.Module):
|
| 1981 |
+
def __init__(
|
| 1982 |
+
self,
|
| 1983 |
+
config,
|
| 1984 |
+
):
|
| 1985 |
+
super().__init__()
|
| 1986 |
+
self.prenorm = config.prenorm
|
| 1987 |
+
self.fused_dropout_add_ln = config.fused_dropout_add_ln
|
| 1988 |
+
|
| 1989 |
+
self.attn = NomicAttentionPooling(config)
|
| 1990 |
+
activation = (
|
| 1991 |
+
F.sigmoid
|
| 1992 |
+
if config.activation_function == "glu"
|
| 1993 |
+
else (F.silu if config.activation_function == "swiglu" else F.gelu)
|
| 1994 |
+
)
|
| 1995 |
+
if config.activation_function in ["glu", "swiglu", "geglu"]:
|
| 1996 |
+
self.mlp = NomciBertGatedMLP(
|
| 1997 |
+
config.n_embd,
|
| 1998 |
+
hidden_features=config.n_inner,
|
| 1999 |
+
bias1=config.mlp_fc1_bias,
|
| 2000 |
+
bias2=config.mlp_fc2_bias,
|
| 2001 |
+
activation=activation,
|
| 2002 |
+
fused_bias_fc=config.fused_bias_fc,
|
| 2003 |
+
)
|
| 2004 |
+
else:
|
| 2005 |
+
self.mlp = NomicBertMLP(
|
| 2006 |
+
config.n_embd,
|
| 2007 |
+
hidden_features=config.n_inner,
|
| 2008 |
+
bias1=config.mlp_fc1_bias,
|
| 2009 |
+
bias2=config.mlp_fc2_bias,
|
| 2010 |
+
activation=activation,
|
| 2011 |
+
fused_bias_fc=config.fused_bias_fc,
|
| 2012 |
+
)
|
| 2013 |
+
|
| 2014 |
+
self.dropout1 = nn.Dropout(config.resid_pdrop)
|
| 2015 |
+
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 2016 |
+
self.dropout2 = nn.Dropout(config.resid_pdrop)
|
| 2017 |
+
|
| 2018 |
+
def forward(
|
| 2019 |
+
self,
|
| 2020 |
+
hidden_states: torch.Tensor,
|
| 2021 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 2022 |
+
):
|
| 2023 |
+
r"""Pass the input through the encoder layer.
|
| 2024 |
+
|
| 2025 |
+
Args:
|
| 2026 |
+
hidden_states: the sequence to the encoder layer (required).
|
| 2027 |
+
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
| 2028 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
| 2029 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
| 2030 |
+
about the CLS token in the last layer.
|
| 2031 |
+
"""
|
| 2032 |
+
|
| 2033 |
+
attn_outputs = self.attn(
|
| 2034 |
+
hidden_states,
|
| 2035 |
+
attention_mask=attention_mask,
|
| 2036 |
+
)
|
| 2037 |
+
|
| 2038 |
+
normed = self.norm1(attn_outputs)
|
| 2039 |
+
hidden_states = hidden_states + self.mlp(normed)
|
| 2040 |
+
|
| 2041 |
+
return hidden_states
|
| 2042 |
+
|
| 2043 |
+
|
| 2044 |
+
class NomicVisionPreTrainedModel(PreTrainedModel):
|
| 2045 |
+
"""An abstract class to handle weights initialization and
|
| 2046 |
+
a simple interface for dowloading and loading pretrained models.
|
| 2047 |
+
"""
|
| 2048 |
+
|
| 2049 |
+
config_class = NomicBertConfig
|
| 2050 |
+
base_model_prefix = "model"
|
| 2051 |
+
supports_gradient_checkpointing = True
|
| 2052 |
+
_no_split_modules = ["Block"]
|
| 2053 |
+
_skip_keys_device_placement = "past_key_values"
|
| 2054 |
+
|
| 2055 |
+
def __init__(self, config, *inputs, **kwargs):
|
| 2056 |
+
super().__init__(config)
|
| 2057 |
+
if not isinstance(config, GPT2Config):
|
| 2058 |
+
raise ValueError(
|
| 2059 |
+
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
|
| 2060 |
+
"To create a model from a Google pretrained model use "
|
| 2061 |
+
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
| 2062 |
+
self.__class__.__name__, self.__class__.__name__
|
| 2063 |
+
)
|
| 2064 |
+
)
|
| 2065 |
+
self.config = config
|
| 2066 |
+
|
| 2067 |
+
|
| 2068 |
+
class NomicVisionModel(NomicVisionPreTrainedModel):
|
| 2069 |
+
def __init__(self, config):
|
| 2070 |
+
super().__init__(config)
|
| 2071 |
+
|
| 2072 |
+
self.embeddings = NomicVisionPatchEmbeddings(config)
|
| 2073 |
+
self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
|
| 2074 |
+
|
| 2075 |
+
self.selector = NomicMultiHeadAttentionPooling(config)
|
| 2076 |
+
|
| 2077 |
+
self.global_pool = getattr(config, "global_pool", None)
|
| 2078 |
+
self.num_prefix_tokens = (1 if not getattr(config, "no_cls_token", False) else 0) + getattr(
|
| 2079 |
+
config, "register_tokens", 0
|
| 2080 |
+
)
|
| 2081 |
+
|
| 2082 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
| 2083 |
+
|
| 2084 |
+
def forward(
|
| 2085 |
+
self,
|
| 2086 |
+
pixel_values,
|
| 2087 |
+
attention_mask=None,
|
| 2088 |
+
position_ids=None,
|
| 2089 |
+
token_type_ids=None,
|
| 2090 |
+
return_dict=None,
|
| 2091 |
+
matryoshka_dim=None,
|
| 2092 |
+
):
|
| 2093 |
+
embeddings, rope = self.embeddings(pixel_values)
|
| 2094 |
+
|
| 2095 |
+
original_dtype = embeddings.dtype
|
| 2096 |
+
|
| 2097 |
+
hidden_states = embeddings
|
| 2098 |
+
# unused but easier to pass to gradient checkpointing as words
|
| 2099 |
+
residual = None
|
| 2100 |
+
for layer in self.layers:
|
| 2101 |
+
# need to pass none for backwards compatability
|
| 2102 |
+
hidden_states, _, residual = layer(
|
| 2103 |
+
hidden_states, None, residual=residual, is_padded_inputs=False, rope=rope
|
| 2104 |
+
)
|
| 2105 |
+
|
| 2106 |
+
hidden_states = hidden_states + residual
|
| 2107 |
+
if self.global_pool == "avg":
|
| 2108 |
+
hidden_states = hidden_states[:, self.num_prefix_tokens :].mean(dim=1)
|
| 2109 |
+
|
| 2110 |
+
pooled_output = self.selector(hidden_states)
|
| 2111 |
+
|
| 2112 |
+
return BaseModelOutputWithPast(
|
| 2113 |
+
last_hidden_state=pooled_output,
|
| 2114 |
+
hidden_states=hidden_states,
|
| 2115 |
+
)
|