File size: 7,945 Bytes
ca7299e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from typing import Any, Dict, List, Tuple
import os
from time import strftime

import numpy as np
import pandas as pd
import torch
# import hydra
# import rootutils
# from lightning import LightningDataModule, LightningModule, Trainer
# from lightning.pytorch.loggers import Logger
from omegaconf import DictConfig

# rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)

# ------------------------------------------------------------------------------------ #
# the setup_root above is equivalent to:
# - adding project root dir to PYTHONPATH
#       (so you don't need to force user to install project as a package)
#       (necessary before importing any local modules e.g. `from src import utils`)
# - setting up PROJECT_ROOT environment variable
#       (which is used as a base for paths in "configs/paths/default.yaml")
#       (this way all filepaths are the same no matter where you run the code)
# - loading environment variables from ".env" in root dir
#
# you can remove it if you:
# 1. either install project as a package or move entry files to project root dir
# 2. set `root_dir` to "." in "configs/paths/default.yaml"
#
# more info: https://github.com/ashleve/rootutils
# ------------------------------------------------------------------------------------ #

from src.utils import (
    RankedLogger,
    extras,
    instantiate_loggers,
    log_hyperparameters,
    task_wrapper,
    checkpoint_utils,
    plot_utils,
)
from src.common.pdb_utils import extract_backbone_coords
from src.metrics import metrics 
from src.common.geo_utils import _find_rigid_alignment

log = RankedLogger(__name__, rank_zero_only=True)


def evaluate_prediction(pred_dir: str, target_dir: str = None, crystal_dir: str = None, tag: str = None):
    """Evaluate prediction results based on pdb files.
    """
    if target_dir is None or not os.path.isdir(target_dir):
        log.warning(f"target_dir {target_dir} does not exist. Skip evaluation.")
        return {}
        
    assert os.path.isdir(pred_dir), f"pred_dir {pred_dir} is not a directory."
    
    targets = [
        d.replace(".pdb", "") for d in os.listdir(target_dir)
    ]
    # pred_bases = os.listdir(pred_dir)
    output_dir = pred_dir
    tag = tag if tag is not None else "dev"
    timestamp = strftime("%m%d-%H-%M")
    
    fns = {
        'val_clash': metrics.validity, 
        'val_bond': metrics.bonding_validity,
        'js_pwd': metrics.js_pwd, 
        'js_rg': metrics.js_rg, 
        # 'js_tica_pos': metrics.js_tica_pos,
        'w2_rmwd':  metrics.w2_rmwd,
        # 'div_rmsd': metrics.div_rmsd,
        'div_rmsf': metrics.div_rmsf,
        'pro_w_contacks': metrics.pro_w_contacts,
        'pro_t_contacks': metrics.pro_t_contacts,
        # 'pro_c_contacks': metrics.pro_c_contacts,
    }
    eval_res = {k: {} for k in fns}
    

    print(f"total_md_num = {len(targets)}")
    count = 0 
    for target in targets:
        count += 1
        print("")
        print(count, target)
        pred_file = os.path.join(pred_dir, f"{target}.pdb")
        # assert os.path.isfile(pred_file), f"pred_file {pred_file} does not exist."
        if not os.path.isfile(pred_file):
            continue
        
        target_file = os.path.join(target_dir, f"{target}.pdb")
        ca_coords = {
            'target': extract_backbone_coords(target_file),
            'pred': extract_backbone_coords(pred_file),
        }
        cry_target_file = os.path.join(crystal_dir, f"{target}.pdb")
        cry_ca_coords = extract_backbone_coords(cry_target_file)[0]


        for f_name, func in fns.items():
            print(f_name)


            if f_name == 'w2_rmwd':
                v_ref  = torch.as_tensor(ca_coords['target'][0])
                for k, v in ca_coords.items():
                    v = torch.as_tensor(v)  # (250,356,3)
                    for idx in range(v.shape[0]):
                        R, t = _find_rigid_alignment(v[idx], v_ref)
                        v[idx] = (torch.matmul(R, v[idx].transpose(-2, -1))).transpose(-2, -1) + t.unsqueeze(0)
                    ca_coords[k] = v.numpy()


            if f_name.startswith('js_'):
                res = func(ca_coords, ref_key='target')
            elif f_name == 'pro_c_contacks':
                res = func(target_file, pred_file, cry_target_file)
            elif f_name.startswith('pro_'):
                res = func(ca_coords, cry_ca_coords)
            else:
                res = func(ca_coords)

            if f_name == 'js_tica' or f_name == 'js_tica_pos':
                pass
                # eval_res[f_name][target] = res[0]['pred']
                # save_to = os.path.join(output_dir, f"tica_{target}_{tag}_{timestamp}.png")
                # plot_utils.scatterplot_2d(res[1], save_to=save_to, ref_key='target')
            else:
                eval_res[f_name][target] = res['pred']
    
    csv_save_to = os.path.join(output_dir, f"metrics_{tag}_{timestamp}.csv")
    df = pd.DataFrame.from_dict(eval_res) # row = target, col = metric name
    df.to_csv(csv_save_to)
    print(f"metrics saved to {csv_save_to}")
    mean_metrics = np.around(df.mean(), decimals=4)
    
    return mean_metrics
        

# @task_wrapper
# def evaluate(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
#     """Sample on a test set and report evaluation metrics.

#     This method is wrapped in optional @task_wrapper decorator, that controls the behavior during
#     failure. Useful for multiruns, saving info about the crash, etc.

#     :param cfg: DictConfig configuration composed by Hydra.
#     :return: Tuple[dict, dict] with metrics and dict with all instantiated objects.
#     """
#     # assert cfg.ckpt_path
#     pred_dir = cfg.get("pred_dir")
#     if pred_dir and os.path.isdir(pred_dir):
#         log.info(f"Found pre-computed prediction directory {pred_dir}.")
#         metric_dict = evaluate_prediction(pred_dir, target_dir=cfg.target_dir)
#         return metric_dict, None

#     log.info(f"Instantiating datamodule <{cfg.data._target_}>")
#     datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data)

#     log.info(f"Instantiating model <{cfg.model._target_}>")
#     model: LightningModule = hydra.utils.instantiate(cfg.model)

#     log.info("Instantiating loggers...")
#     logger: List[Logger] = instantiate_loggers(cfg.get("logger"))

#     log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
#     trainer: Trainer = hydra.utils.instantiate(cfg.trainer, logger=logger)

#     object_dict = {
#         "cfg": cfg,
#         "datamodule": datamodule,
#         "model": model,
#         "logger": logger,
#         "trainer": trainer,
#     }

#     if logger:
#         log.info("Logging hyperparameters!")
#         log_hyperparameters(object_dict)

#     # Load checkpoint manually.
#     model, ckpt_path = checkpoint_utils.load_model_checkpoint(model, cfg.ckpt_path)

#     # log.info("Starting testing!")
#     # trainer.test(model=model, datamodule=datamodule, ckpt_path=cfg.ckpt_path)
    
#     # Get dataloader for prediction.
#     datamodule.setup(stage="predict")
#     dataloaders = datamodule.test_dataloader()
    
#     log.info("Starting predictions.")
#     pred_dir = trainer.predict(model=model, dataloaders=dataloaders, ckpt_path=ckpt_path)[-1]

#     # metric_dict = trainer.callback_metrics
#     log.info("Starting evaluations.")
#     metric_dict = evaluate_prediction(pred_dir, target_dir=cfg.target_dir)
    
#     return metric_dict, object_dict


# @hydra.main(version_base="1.3", config_path="../configs", config_name="eval.yaml")
# def main(cfg: DictConfig) -> None:
#     """Main entry point for evaluation.

#     :param cfg: DictConfig configuration composed by Hydra.
#     """
#     # apply extra utilities
#     # (e.g. ask for tags if none are provided in cfg, print cfg tree, etc.)
#     extras(cfg)

#     evaluate(cfg)


# if __name__ == "__main__":
#     main()