P2DFlow / models /edge_embedder.py
Holmes
test
ca7299e
import torch
from torch import nn
from models.utils import get_index_embedding, calc_distogram
from models.add_module.model_utils import rbf
class EdgeEmbedder(nn.Module):
def __init__(self, module_cfg):
super(EdgeEmbedder, self).__init__()
self._cfg = module_cfg
self.c_s = self._cfg.c_s
self.c_p = self._cfg.c_p
self.feat_dim = self._cfg.feat_dim
self.linear_s_p = nn.Linear(self.c_s, self.feat_dim)
self.linear_relpos = nn.Linear(self.feat_dim, self.feat_dim)
self.num_cross_heads = 32
self.c_pair_pre = 20
total_edge_feats = self.feat_dim * 3 + self._cfg.num_bins * 2 + self.c_pair_pre
# total_edge_feats = self.num_cross_heads + self._cfg.num_bins * 2 + self.c_pair_pre
self.edge_embedder = nn.Sequential(
nn.Linear(total_edge_feats, self.c_p),
nn.ReLU(),
nn.Dropout(self._cfg.dropout),
nn.Linear(self.c_p, self.c_p),
)
def embed_relpos(self, pos):
rel_pos = pos[:, :, None] - pos[:, None, :]
pos_emb = get_index_embedding(rel_pos, self._cfg.feat_dim, max_len=2056)
return self.linear_relpos(pos_emb)
def _cross_concat(self, feats_1d, num_batch, num_res):
'''
output: (B, L, L, 2*d_node)
'''
return torch.cat([
torch.tile(feats_1d[:, :, None, :], (1, 1, num_res, 1)),
torch.tile(feats_1d[:, None, :, :], (1, num_res, 1, 1)),
], dim=-1).float().reshape([num_batch, num_res, num_res, -1])
def forward(self, s, t, sc_t, pair_repr_pre, p_mask):
'''
s: same as node, (B, L, d_node)
'''
num_batch, num_res, d_node = s.shape
p_i = self.linear_s_p(s) # (B,L,feat_dim)
cross_node_feats = self._cross_concat(p_i, num_batch, num_res)
pos = torch.arange(
num_res, device=s.device).unsqueeze(0).repeat(num_batch, 1)
relpos_feats = self.embed_relpos(pos)
# node_split_heads = s.reshape(num_batch, num_res, d_node//self.num_cross_heads, self.num_cross_heads) # (B,L,d_node//num_head,num_head)
# cross_node_feats =torch.einsum('bijh,bkjh->bikh', node_split_heads, node_split_heads) # (B,L,L,num_head)
pos = t
dists_2d = torch.linalg.norm(
pos[:, :, None, :] - pos[:, None, :, :], axis=-1) # (B,L,L)
dist_feats = rbf(dists_2d, D_min = 0., D_max = self._cfg.max_dist, D_count = self._cfg.num_bins)
# dist_feats = rbf(dists_2d, D_min = 0., D_max = 20.0, D_count = self._cfg.num_bins)
pos = sc_t
dists_2d = torch.linalg.norm(
pos[:, :, None, :] - pos[:, None, :, :], axis=-1) # (B,L,L)
sc_feats = rbf(dists_2d, D_min = 0., D_max = self._cfg.max_dist, D_count = self._cfg.num_bins)
# sc_feats = rbf(dists_2d, D_min = 0., D_max = 20.0, D_count = self._cfg.num_bins)
all_edge_feats = torch.concat(
[cross_node_feats, relpos_feats, dist_feats, sc_feats, pair_repr_pre], dim=-1)
# all_edge_feats = torch.concat(
# [cross_node_feats, dist_feats, sc_feats, pair_repr_pre], dim=-1)
edge_feats = self.edge_embedder(all_edge_feats) # (B,L,L,c_p)
return edge_feats