|
|
import torch |
|
|
from torch import nn |
|
|
|
|
|
from models.utils import get_index_embedding, calc_distogram |
|
|
from models.add_module.model_utils import rbf |
|
|
|
|
|
class EdgeEmbedder(nn.Module): |
|
|
|
|
|
def __init__(self, module_cfg): |
|
|
super(EdgeEmbedder, self).__init__() |
|
|
self._cfg = module_cfg |
|
|
|
|
|
self.c_s = self._cfg.c_s |
|
|
self.c_p = self._cfg.c_p |
|
|
self.feat_dim = self._cfg.feat_dim |
|
|
|
|
|
self.linear_s_p = nn.Linear(self.c_s, self.feat_dim) |
|
|
self.linear_relpos = nn.Linear(self.feat_dim, self.feat_dim) |
|
|
|
|
|
self.num_cross_heads = 32 |
|
|
self.c_pair_pre = 20 |
|
|
total_edge_feats = self.feat_dim * 3 + self._cfg.num_bins * 2 + self.c_pair_pre |
|
|
|
|
|
self.edge_embedder = nn.Sequential( |
|
|
nn.Linear(total_edge_feats, self.c_p), |
|
|
nn.ReLU(), |
|
|
nn.Dropout(self._cfg.dropout), |
|
|
nn.Linear(self.c_p, self.c_p), |
|
|
) |
|
|
|
|
|
def embed_relpos(self, pos): |
|
|
rel_pos = pos[:, :, None] - pos[:, None, :] |
|
|
pos_emb = get_index_embedding(rel_pos, self._cfg.feat_dim, max_len=2056) |
|
|
return self.linear_relpos(pos_emb) |
|
|
|
|
|
def _cross_concat(self, feats_1d, num_batch, num_res): |
|
|
''' |
|
|
output: (B, L, L, 2*d_node) |
|
|
|
|
|
''' |
|
|
return torch.cat([ |
|
|
torch.tile(feats_1d[:, :, None, :], (1, 1, num_res, 1)), |
|
|
torch.tile(feats_1d[:, None, :, :], (1, num_res, 1, 1)), |
|
|
], dim=-1).float().reshape([num_batch, num_res, num_res, -1]) |
|
|
|
|
|
def forward(self, s, t, sc_t, pair_repr_pre, p_mask): |
|
|
''' |
|
|
s: same as node, (B, L, d_node) |
|
|
|
|
|
''' |
|
|
num_batch, num_res, d_node = s.shape |
|
|
p_i = self.linear_s_p(s) |
|
|
cross_node_feats = self._cross_concat(p_i, num_batch, num_res) |
|
|
|
|
|
pos = torch.arange( |
|
|
num_res, device=s.device).unsqueeze(0).repeat(num_batch, 1) |
|
|
relpos_feats = self.embed_relpos(pos) |
|
|
|
|
|
|
|
|
|
|
|
pos = t |
|
|
dists_2d = torch.linalg.norm( |
|
|
pos[:, :, None, :] - pos[:, None, :, :], axis=-1) |
|
|
|
|
|
dist_feats = rbf(dists_2d, D_min = 0., D_max = self._cfg.max_dist, D_count = self._cfg.num_bins) |
|
|
|
|
|
|
|
|
pos = sc_t |
|
|
dists_2d = torch.linalg.norm( |
|
|
pos[:, :, None, :] - pos[:, None, :, :], axis=-1) |
|
|
|
|
|
sc_feats = rbf(dists_2d, D_min = 0., D_max = self._cfg.max_dist, D_count = self._cfg.num_bins) |
|
|
|
|
|
|
|
|
all_edge_feats = torch.concat( |
|
|
[cross_node_feats, relpos_feats, dist_feats, sc_feats, pair_repr_pre], dim=-1) |
|
|
|
|
|
|
|
|
edge_feats = self.edge_embedder(all_edge_feats) |
|
|
return edge_feats |