|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Modified code of Openfold's IPA.""" |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
import math |
|
|
from scipy.stats import truncnorm |
|
|
import torch.nn as nn |
|
|
from typing import Optional, Callable, List, Sequence |
|
|
from openfold.utils.rigid_utils import Rigid |
|
|
from data import all_atom |
|
|
|
|
|
|
|
|
def permute_final_dims(tensor: torch.Tensor, inds: List[int]): |
|
|
zero_index = -1 * len(inds) |
|
|
first_inds = list(range(len(tensor.shape[:zero_index]))) |
|
|
return tensor.permute(first_inds + [zero_index + i for i in inds]) |
|
|
|
|
|
|
|
|
def flatten_final_dims(t: torch.Tensor, no_dims: int): |
|
|
return t.reshape(t.shape[:-no_dims] + (-1,)) |
|
|
|
|
|
|
|
|
def ipa_point_weights_init_(weights): |
|
|
with torch.no_grad(): |
|
|
softplus_inverse_1 = 0.541324854612918 |
|
|
weights.fill_(softplus_inverse_1) |
|
|
|
|
|
def _prod(nums): |
|
|
out = 1 |
|
|
for n in nums: |
|
|
out = out * n |
|
|
return out |
|
|
|
|
|
|
|
|
def _calculate_fan(linear_weight_shape, fan="fan_in"): |
|
|
fan_out, fan_in = linear_weight_shape |
|
|
|
|
|
if fan == "fan_in": |
|
|
f = fan_in |
|
|
elif fan == "fan_out": |
|
|
f = fan_out |
|
|
elif fan == "fan_avg": |
|
|
f = (fan_in + fan_out) / 2 |
|
|
else: |
|
|
raise ValueError("Invalid fan option") |
|
|
|
|
|
return f |
|
|
|
|
|
def trunc_normal_init_(weights, scale=1.0, fan="fan_in"): |
|
|
shape = weights.shape |
|
|
f = _calculate_fan(shape, fan) |
|
|
scale = scale / max(1, f) |
|
|
a = -2 |
|
|
b = 2 |
|
|
std = math.sqrt(scale) / truncnorm.std(a=a, b=b, loc=0, scale=1) |
|
|
size = _prod(shape) |
|
|
samples = truncnorm.rvs(a=a, b=b, loc=0, scale=std, size=size) |
|
|
samples = np.reshape(samples, shape) |
|
|
with torch.no_grad(): |
|
|
weights.copy_(torch.tensor(samples, device=weights.device)) |
|
|
|
|
|
|
|
|
def lecun_normal_init_(weights): |
|
|
trunc_normal_init_(weights, scale=1.0) |
|
|
|
|
|
|
|
|
def he_normal_init_(weights): |
|
|
trunc_normal_init_(weights, scale=2.0) |
|
|
|
|
|
|
|
|
def glorot_uniform_init_(weights): |
|
|
nn.init.xavier_uniform_(weights, gain=1) |
|
|
|
|
|
|
|
|
def final_init_(weights): |
|
|
with torch.no_grad(): |
|
|
weights.fill_(0.0) |
|
|
|
|
|
|
|
|
def gating_init_(weights): |
|
|
with torch.no_grad(): |
|
|
weights.fill_(0.0) |
|
|
|
|
|
|
|
|
def normal_init_(weights): |
|
|
torch.nn.init.kaiming_normal_(weights, nonlinearity="linear") |
|
|
|
|
|
|
|
|
def compute_angles(ca_pos, pts): |
|
|
batch_size, num_res, num_heads, num_pts, _ = pts.shape |
|
|
calpha_vecs = (ca_pos[:, :, None, :] - ca_pos[:, None, :, :]) + 1e-10 |
|
|
calpha_vecs = torch.tile(calpha_vecs[:, :, :, None, None, :], (1, 1, 1, num_heads, num_pts, 1)) |
|
|
ipa_pts = pts[:, :, None, :, :, :] - torch.tile(ca_pos[:, :, None, None, None, :], (1, 1, num_res, num_heads, num_pts, 1)) |
|
|
phi_angles = all_atom.calculate_neighbor_angles( |
|
|
calpha_vecs.reshape(-1, 3), |
|
|
ipa_pts.reshape(-1, 3) |
|
|
).reshape(batch_size, num_res, num_res, num_heads, num_pts) |
|
|
return phi_angles |
|
|
|
|
|
|
|
|
class Linear(nn.Linear): |
|
|
""" |
|
|
A Linear layer with built-in nonstandard initializations. Called just |
|
|
like torch.nn.Linear. |
|
|
|
|
|
Implements the initializers in 1.11.4, plus some additional ones found |
|
|
in the code. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
in_dim: int, |
|
|
out_dim: int, |
|
|
bias: bool = True, |
|
|
init: str = "default", |
|
|
init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None, |
|
|
): |
|
|
""" |
|
|
Args: |
|
|
in_dim: |
|
|
The final dimension of inputs to the layer |
|
|
out_dim: |
|
|
The final dimension of layer outputs |
|
|
bias: |
|
|
Whether to learn an additive bias. True by default |
|
|
init: |
|
|
The initializer to use. Choose from: |
|
|
|
|
|
"default": LeCun fan-in truncated normal initialization |
|
|
"relu": He initialization w/ truncated normal distribution |
|
|
"glorot": Fan-average Glorot uniform initialization |
|
|
"gating": Weights=0, Bias=1 |
|
|
"normal": Normal initialization with std=1/sqrt(fan_in) |
|
|
"final": Weights=0, Bias=0 |
|
|
|
|
|
Overridden by init_fn if the latter is not None. |
|
|
init_fn: |
|
|
A custom initializer taking weight and bias as inputs. |
|
|
Overrides init if not None. |
|
|
""" |
|
|
super(Linear, self).__init__(in_dim, out_dim, bias=bias) |
|
|
|
|
|
if bias: |
|
|
with torch.no_grad(): |
|
|
self.bias.fill_(0) |
|
|
|
|
|
if init_fn is not None: |
|
|
init_fn(self.weight, self.bias) |
|
|
else: |
|
|
if init == "default": |
|
|
lecun_normal_init_(self.weight) |
|
|
elif init == "relu": |
|
|
he_normal_init_(self.weight) |
|
|
elif init == "glorot": |
|
|
glorot_uniform_init_(self.weight) |
|
|
elif init == "gating": |
|
|
gating_init_(self.weight) |
|
|
if bias: |
|
|
with torch.no_grad(): |
|
|
self.bias.fill_(1.0) |
|
|
elif init == "normal": |
|
|
normal_init_(self.weight) |
|
|
elif init == "final": |
|
|
final_init_(self.weight) |
|
|
else: |
|
|
raise ValueError("Invalid init string.") |
|
|
|
|
|
|
|
|
class StructureModuleTransition(nn.Module): |
|
|
def __init__(self, c): |
|
|
super(StructureModuleTransition, self).__init__() |
|
|
|
|
|
self.c = c |
|
|
|
|
|
self.linear_1 = Linear(self.c, self.c, init="relu") |
|
|
self.linear_2 = Linear(self.c, self.c, init="relu") |
|
|
self.linear_3 = Linear(self.c, self.c, init="final") |
|
|
self.relu = nn.ReLU() |
|
|
self.ln = nn.LayerNorm(self.c) |
|
|
|
|
|
def forward(self, s): |
|
|
s_initial = s |
|
|
s = self.linear_1(s) |
|
|
s = self.relu(s) |
|
|
s = self.linear_2(s) |
|
|
s = self.relu(s) |
|
|
s = self.linear_3(s) |
|
|
s = s + s_initial |
|
|
s = self.ln(s) |
|
|
|
|
|
return s |
|
|
|
|
|
|
|
|
class EdgeTransition(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
*, |
|
|
node_embed_size, |
|
|
edge_embed_in, |
|
|
edge_embed_out, |
|
|
num_layers=2, |
|
|
node_dilation=2 |
|
|
): |
|
|
super(EdgeTransition, self).__init__() |
|
|
|
|
|
bias_embed_size = node_embed_size // node_dilation |
|
|
self.initial_embed = Linear( |
|
|
node_embed_size, bias_embed_size, init="relu") |
|
|
hidden_size = bias_embed_size * 2 + edge_embed_in |
|
|
trunk_layers = [] |
|
|
for _ in range(num_layers): |
|
|
trunk_layers.append(Linear(hidden_size, hidden_size, init="relu")) |
|
|
trunk_layers.append(nn.ReLU()) |
|
|
self.trunk = nn.Sequential(*trunk_layers) |
|
|
self.final_layer = Linear(hidden_size, edge_embed_out, init="final") |
|
|
self.layer_norm = nn.LayerNorm(edge_embed_out) |
|
|
|
|
|
def forward(self, node_embed, edge_embed): |
|
|
node_embed = self.initial_embed(node_embed) |
|
|
batch_size, num_res, _ = node_embed.shape |
|
|
edge_bias = torch.cat([ |
|
|
torch.tile(node_embed[:, :, None, :], (1, 1, num_res, 1)), |
|
|
torch.tile(node_embed[:, None, :, :], (1, num_res, 1, 1)), |
|
|
], axis=-1) |
|
|
edge_embed = torch.cat( |
|
|
[edge_embed, edge_bias], axis=-1).reshape( |
|
|
batch_size * num_res**2, -1) |
|
|
edge_embed = self.final_layer(self.trunk(edge_embed) + edge_embed) |
|
|
edge_embed = self.layer_norm(edge_embed) |
|
|
edge_embed = edge_embed.reshape( |
|
|
batch_size, num_res, num_res, -1 |
|
|
) |
|
|
return edge_embed |
|
|
|
|
|
|
|
|
class InvariantPointAttention(nn.Module): |
|
|
""" |
|
|
Implements Algorithm 22. |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
ipa_conf, |
|
|
inf: float = 1e5, |
|
|
eps: float = 1e-8, |
|
|
): |
|
|
""" |
|
|
Args: |
|
|
c_s: |
|
|
Single representation channel dimension |
|
|
c_z: |
|
|
Pair representation channel dimension |
|
|
c_hidden: |
|
|
Hidden channel dimension |
|
|
no_heads: |
|
|
Number of attention heads |
|
|
no_qk_points: |
|
|
Number of query/key points to generate |
|
|
no_v_points: |
|
|
Number of value points to generate |
|
|
""" |
|
|
super(InvariantPointAttention, self).__init__() |
|
|
self._ipa_conf = ipa_conf |
|
|
|
|
|
self.c_s = ipa_conf.c_s |
|
|
self.c_z = ipa_conf.c_z |
|
|
self.c_hidden = ipa_conf.c_hidden |
|
|
self.no_heads = ipa_conf.no_heads |
|
|
self.no_qk_points = ipa_conf.no_qk_points |
|
|
self.no_v_points = ipa_conf.no_v_points |
|
|
self.inf = inf |
|
|
self.eps = eps |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hc = self.c_hidden * self.no_heads |
|
|
self.linear_q = Linear(self.c_s, hc) |
|
|
self.linear_kv = Linear(self.c_s, 2 * hc) |
|
|
|
|
|
hpq = self.no_heads * self.no_qk_points * 3 |
|
|
self.linear_q_points = Linear(self.c_s, hpq) |
|
|
|
|
|
hpkv = self.no_heads * (self.no_qk_points + self.no_v_points) * 3 |
|
|
self.linear_kv_points = Linear(self.c_s, hpkv) |
|
|
|
|
|
self.linear_b = Linear(self.c_z, self.no_heads) |
|
|
self.down_z = Linear(self.c_z, self.c_z // 4) |
|
|
|
|
|
self.head_weights = nn.Parameter(torch.zeros((ipa_conf.no_heads))) |
|
|
ipa_point_weights_init_(self.head_weights) |
|
|
|
|
|
concat_out_dim = ( |
|
|
self.c_z // 4 + self.c_hidden + self.no_v_points * 4 |
|
|
) |
|
|
self.linear_out = Linear(self.no_heads * concat_out_dim, self.c_s, init="final") |
|
|
|
|
|
self.softmax = nn.Softmax(dim=-1) |
|
|
self.softplus = nn.Softplus() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
s: torch.Tensor, |
|
|
z: Optional[torch.Tensor], |
|
|
r: Rigid, |
|
|
mask: torch.Tensor, |
|
|
_offload_inference: bool = False, |
|
|
_z_reference_list: Optional[Sequence[torch.Tensor]] = None, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
s: |
|
|
[*, N_res, C_s] single representation |
|
|
z: |
|
|
[*, N_res, N_res, C_z] pair representation |
|
|
r: |
|
|
[*, N_res] transformation object |
|
|
mask: |
|
|
[*, N_res] mask |
|
|
Returns: |
|
|
[*, N_res, C_s] single representation update |
|
|
""" |
|
|
if _offload_inference: |
|
|
z = _z_reference_list |
|
|
else: |
|
|
z = [z] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q = self.linear_q(s) |
|
|
kv = self.linear_kv(s) |
|
|
|
|
|
|
|
|
q = q.view(q.shape[:-1] + (self.no_heads, -1)) |
|
|
|
|
|
|
|
|
kv = kv.view(kv.shape[:-1] + (self.no_heads, -1)) |
|
|
|
|
|
|
|
|
k, v = torch.split(kv, self.c_hidden, dim=-1) |
|
|
|
|
|
|
|
|
q_pts = self.linear_q_points(s) |
|
|
|
|
|
|
|
|
|
|
|
q_pts = torch.split(q_pts, q_pts.shape[-1] // 3, dim=-1) |
|
|
q_pts = torch.stack(q_pts, dim=-1) |
|
|
q_pts = r[..., None].apply(q_pts) |
|
|
|
|
|
|
|
|
q_pts = q_pts.view( |
|
|
q_pts.shape[:-2] + (self.no_heads, self.no_qk_points, 3) |
|
|
) |
|
|
|
|
|
|
|
|
kv_pts = self.linear_kv_points(s) |
|
|
|
|
|
|
|
|
kv_pts = torch.split(kv_pts, kv_pts.shape[-1] // 3, dim=-1) |
|
|
kv_pts = torch.stack(kv_pts, dim=-1) |
|
|
kv_pts = r[..., None].apply(kv_pts) |
|
|
|
|
|
|
|
|
kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.no_heads, -1, 3)) |
|
|
|
|
|
|
|
|
k_pts, v_pts = torch.split( |
|
|
kv_pts, [self.no_qk_points, self.no_v_points], dim=-2 |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b = self.linear_b(z[0]) |
|
|
|
|
|
if(_offload_inference): |
|
|
z[0] = z[0].cpu() |
|
|
|
|
|
|
|
|
a = torch.matmul( |
|
|
math.sqrt(1.0 / (3 * self.c_hidden)) * |
|
|
permute_final_dims(q, (1, 0, 2)), |
|
|
permute_final_dims(k, (1, 2, 0)), |
|
|
) |
|
|
|
|
|
a += (math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1))) |
|
|
|
|
|
|
|
|
pt_displacement = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5) |
|
|
pt_att = pt_displacement ** 2 |
|
|
|
|
|
|
|
|
pt_att = sum(torch.unbind(pt_att, dim=-1)) |
|
|
head_weights = self.softplus(self.head_weights).view( |
|
|
*((1,) * len(pt_att.shape[:-2]) + (-1, 1)) |
|
|
) |
|
|
head_weights = head_weights * math.sqrt( |
|
|
1.0 / (3 * (self.no_qk_points * 9.0 / 2)) |
|
|
) |
|
|
pt_att = pt_att * head_weights |
|
|
|
|
|
|
|
|
pt_att = torch.sum(pt_att, dim=-1) * (-0.5) |
|
|
|
|
|
square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2) |
|
|
square_mask = self.inf * (square_mask - 1) |
|
|
|
|
|
|
|
|
pt_att = permute_final_dims(pt_att, (2, 0, 1)) |
|
|
|
|
|
a = a + pt_att |
|
|
a = a + square_mask.unsqueeze(-3) |
|
|
a = self.softmax(a) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o = torch.matmul( |
|
|
a, v.transpose(-2, -3) |
|
|
).transpose(-2, -3) |
|
|
|
|
|
|
|
|
o = flatten_final_dims(o, 2) |
|
|
|
|
|
|
|
|
o_pt = torch.sum( |
|
|
( |
|
|
a[..., None, :, :, None] |
|
|
* permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :] |
|
|
), |
|
|
dim=-2, |
|
|
) |
|
|
|
|
|
|
|
|
o_pt = permute_final_dims(o_pt, (2, 0, 3, 1)) |
|
|
o_pt = r[..., None, None].invert_apply(o_pt) |
|
|
|
|
|
|
|
|
o_pt_dists = torch.sqrt(torch.sum(o_pt ** 2, dim=-1) + self.eps) |
|
|
o_pt_norm_feats = flatten_final_dims( |
|
|
o_pt_dists, 2) |
|
|
|
|
|
|
|
|
o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3) |
|
|
|
|
|
if(_offload_inference): |
|
|
z[0] = z[0].to(o_pt.device) |
|
|
|
|
|
|
|
|
pair_z = self.down_z(z[0]) |
|
|
o_pair = torch.matmul(a.transpose(-2, -3), pair_z) |
|
|
|
|
|
|
|
|
o_pair = flatten_final_dims(o_pair, 2) |
|
|
|
|
|
o_feats = [o, *torch.unbind(o_pt, dim=-1), o_pt_norm_feats, o_pair] |
|
|
|
|
|
|
|
|
s = self.linear_out( |
|
|
torch.cat( |
|
|
o_feats, dim=-1 |
|
|
) |
|
|
) |
|
|
|
|
|
return s |
|
|
|
|
|
|
|
|
class TorsionAngles(nn.Module): |
|
|
def __init__(self, c, num_torsions, eps=1e-8): |
|
|
super(TorsionAngles, self).__init__() |
|
|
|
|
|
self.c = c |
|
|
self.eps = eps |
|
|
self.num_torsions = num_torsions |
|
|
|
|
|
self.linear_1 = Linear(self.c, self.c, init="relu") |
|
|
self.linear_2 = Linear(self.c, self.c, init="relu") |
|
|
|
|
|
self.linear_3 = Linear(self.c, self.c, init="final") |
|
|
self.linear_final = Linear( |
|
|
self.c, self.num_torsions * 2, init="final") |
|
|
|
|
|
self.relu = nn.ReLU() |
|
|
|
|
|
def forward(self, s): |
|
|
s_initial = s |
|
|
s = self.linear_1(s) |
|
|
s = self.relu(s) |
|
|
s = self.linear_2(s) |
|
|
|
|
|
s = s + s_initial |
|
|
unnormalized_s = self.linear_final(s) |
|
|
norm_denom = torch.sqrt( |
|
|
torch.clamp( |
|
|
torch.sum(unnormalized_s ** 2, dim=-1, keepdim=True), |
|
|
min=self.eps, |
|
|
) |
|
|
) |
|
|
normalized_s = unnormalized_s / norm_denom |
|
|
|
|
|
return unnormalized_s, normalized_s |
|
|
|
|
|
|
|
|
class RotationVFLayer(nn.Module): |
|
|
def __init__(self, dim): |
|
|
super(RotationVFLayer, self).__init__() |
|
|
|
|
|
self.linear_1 = Linear(dim, dim, init="relu") |
|
|
self.linear_2 = Linear(dim, dim, init="relu") |
|
|
self.linear_3 = Linear(dim, dim) |
|
|
self.final_linear = Linear(dim, 6, init="final") |
|
|
self.relu = nn.ReLU() |
|
|
|
|
|
def forward(self, s): |
|
|
s_initial = s |
|
|
s = self.linear_1(s) |
|
|
s = self.relu(s) |
|
|
s = self.linear_2(s) |
|
|
s = self.relu(s) |
|
|
s = self.linear_3(s) |
|
|
s = s + s_initial |
|
|
return self.final_linear(s) |
|
|
|
|
|
|
|
|
class BackboneUpdate(nn.Module): |
|
|
""" |
|
|
Implements part of Algorithm 23. |
|
|
""" |
|
|
|
|
|
def __init__(self, c_s, use_rot_updates, dropout=0.0): |
|
|
""" |
|
|
Args: |
|
|
c_s: |
|
|
Single representation channel dimension |
|
|
""" |
|
|
super(BackboneUpdate, self).__init__() |
|
|
|
|
|
self.c_s = c_s |
|
|
self.noise_schedule = 1.0 |
|
|
update_dim = 6 if use_rot_updates else 3 |
|
|
|
|
|
self.linear = nn.Sequential( |
|
|
Linear(self.c_s, update_dim, init="final"), |
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
def forward(self, s: torch.Tensor): |
|
|
""" |
|
|
Args: |
|
|
[*, N_res, C_s] single representation |
|
|
Returns: |
|
|
[*, N_res, 6] update vector |
|
|
""" |
|
|
|
|
|
update = self.noise_schedule * self.linear(s) |
|
|
|
|
|
return update |
|
|
|
|
|
class IpaScore(nn.Module): |
|
|
|
|
|
def __init__(self, model_conf, diffuser): |
|
|
super(IpaScore, self).__init__() |
|
|
self._model_conf = model_conf |
|
|
ipa_conf = model_conf.ipa |
|
|
self._ipa_conf = ipa_conf |
|
|
self.diffuser = diffuser |
|
|
|
|
|
self.scale_pos = lambda x: x * ipa_conf.coordinate_scaling |
|
|
self.scale_rigids = lambda x: x.apply_trans_fn(self.scale_pos) |
|
|
|
|
|
self.unscale_pos = lambda x: x / ipa_conf.coordinate_scaling |
|
|
self.unscale_rigids = lambda x: x.apply_trans_fn(self.unscale_pos) |
|
|
self.trunk = nn.ModuleDict() |
|
|
|
|
|
for b in range(ipa_conf.num_blocks): |
|
|
self.trunk[f'ipa_{b}'] = InvariantPointAttention(ipa_conf) |
|
|
self.trunk[f'ipa_ln_{b}'] = nn.LayerNorm(ipa_conf.c_s) |
|
|
self.trunk[f'skip_embed_{b}'] = Linear( |
|
|
self._model_conf.node_embed_size, |
|
|
self._ipa_conf.c_skip, |
|
|
init="final" |
|
|
) |
|
|
tfmr_in = ipa_conf.c_s + self._ipa_conf.c_skip |
|
|
tfmr_layer = torch.nn.TransformerEncoderLayer( |
|
|
d_model=tfmr_in, |
|
|
nhead=ipa_conf.seq_tfmr_num_heads, |
|
|
dim_feedforward=tfmr_in, |
|
|
batch_first=True, |
|
|
dropout=0.0, |
|
|
norm_first=False |
|
|
) |
|
|
self.trunk[f'seq_tfmr_{b}'] = torch.nn.TransformerEncoder( |
|
|
tfmr_layer, ipa_conf.seq_tfmr_num_layers) |
|
|
self.trunk[f'post_tfmr_{b}'] = Linear( |
|
|
tfmr_in, ipa_conf.c_s, init="final") |
|
|
self.trunk[f'node_transition_{b}'] = StructureModuleTransition( |
|
|
c=ipa_conf.c_s) |
|
|
self.trunk[f'bb_update_{b}'] = BackboneUpdate(ipa_conf.c_s) |
|
|
|
|
|
if b < ipa_conf.num_blocks-1: |
|
|
|
|
|
edge_in = self._model_conf.edge_embed_size |
|
|
self.trunk[f'edge_transition_{b}'] = EdgeTransition( |
|
|
node_embed_size=ipa_conf.c_s, |
|
|
edge_embed_in=edge_in, |
|
|
edge_embed_out=self._model_conf.edge_embed_size, |
|
|
) |
|
|
|
|
|
self.torsion_pred = TorsionAngles(ipa_conf.c_s, 1) |
|
|
|
|
|
def forward(self, init_node_embed, edge_embed, input_feats): |
|
|
node_mask = input_feats['res_mask'].type(torch.float32) |
|
|
diffuse_mask = (1 - input_feats['fixed_mask'].type(torch.float32)) * node_mask |
|
|
edge_mask = node_mask[..., None] * node_mask[..., None, :] |
|
|
init_frames = input_feats['rigids_t'].type(torch.float32) |
|
|
|
|
|
curr_rigids = Rigid.from_tensor_7(torch.clone(init_frames)) |
|
|
init_rigids = Rigid.from_tensor_7(init_frames) |
|
|
init_rots = init_rigids.get_rots() |
|
|
|
|
|
|
|
|
curr_rigids = self.scale_rigids(curr_rigids) |
|
|
init_node_embed = init_node_embed * node_mask[..., None] |
|
|
node_embed = init_node_embed * node_mask[..., None] |
|
|
for b in range(self._ipa_conf.num_blocks): |
|
|
ipa_embed = self.trunk[f'ipa_{b}']( |
|
|
node_embed, |
|
|
edge_embed, |
|
|
curr_rigids, |
|
|
node_mask) |
|
|
ipa_embed *= node_mask[..., None] |
|
|
node_embed = self.trunk[f'ipa_ln_{b}'](node_embed + ipa_embed) |
|
|
seq_tfmr_in = torch.cat([ |
|
|
node_embed, self.trunk[f'skip_embed_{b}'](init_node_embed) |
|
|
], dim=-1) |
|
|
seq_tfmr_out = self.trunk[f'seq_tfmr_{b}']( |
|
|
seq_tfmr_in, src_key_padding_mask=1 - node_mask) |
|
|
node_embed = node_embed + self.trunk[f'post_tfmr_{b}'](seq_tfmr_out) |
|
|
node_embed = self.trunk[f'node_transition_{b}'](node_embed) |
|
|
node_embed = node_embed * node_mask[..., None] |
|
|
rigid_update = self.trunk[f'bb_update_{b}']( |
|
|
node_embed * diffuse_mask[..., None]) |
|
|
curr_rigids = curr_rigids.compose_q_update_vec( |
|
|
rigid_update, diffuse_mask[..., None]) |
|
|
|
|
|
if b < self._ipa_conf.num_blocks-1: |
|
|
edge_embed = self.trunk[f'edge_transition_{b}']( |
|
|
node_embed, edge_embed) |
|
|
edge_embed *= edge_mask[..., None] |
|
|
rot_score = self.diffuser.calc_rot_score( |
|
|
init_rigids.get_rots(), |
|
|
curr_rigids.get_rots(), |
|
|
input_feats['t'] |
|
|
) |
|
|
rot_score = rot_score * node_mask[..., None] |
|
|
|
|
|
curr_rigids = self.unscale_rigids(curr_rigids) |
|
|
trans_score = self.diffuser.calc_trans_score( |
|
|
init_rigids.get_trans(), |
|
|
curr_rigids.get_trans(), |
|
|
input_feats['t'][:, None, None], |
|
|
use_torch=True, |
|
|
) |
|
|
trans_score = trans_score * node_mask[..., None] |
|
|
_, psi_pred = self.torsion_pred(node_embed) |
|
|
model_out = { |
|
|
'psi': psi_pred, |
|
|
'rot_score': rot_score, |
|
|
'trans_score': trans_score, |
|
|
'final_rigids': curr_rigids, |
|
|
} |
|
|
return model_out |
|
|
|