P2DFlow / openfold /data /input_pipeline.py
Holmes
test
ca7299e
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import torch
from openfold.data import data_transforms
def nonensembled_transform_fns(common_cfg, mode_cfg):
"""Input pipeline data transformers that are not ensembled."""
transforms = [
data_transforms.cast_to_64bit_ints,
data_transforms.correct_msa_restypes,
data_transforms.squeeze_features,
data_transforms.randomly_replace_msa_with_unknown(0.0),
data_transforms.make_seq_mask,
data_transforms.make_msa_mask,
data_transforms.make_hhblits_profile,
]
if common_cfg.use_templates:
transforms.extend(
[
data_transforms.fix_templates_aatype,
data_transforms.make_template_mask,
data_transforms.make_pseudo_beta("template_"),
]
)
if common_cfg.use_template_torsion_angles:
transforms.extend(
[
data_transforms.atom37_to_torsion_angles("template_"),
]
)
transforms.extend(
[
data_transforms.make_atom14_masks,
]
)
if mode_cfg.supervised:
transforms.extend(
[
data_transforms.make_atom14_positions,
data_transforms.atom37_to_frames,
data_transforms.atom37_to_torsion_angles(""),
data_transforms.make_pseudo_beta(""),
data_transforms.get_backbone_frames,
data_transforms.get_chi_angles,
]
)
return transforms
def ensembled_transform_fns(common_cfg, mode_cfg, ensemble_seed):
"""Input pipeline data transformers that can be ensembled and averaged."""
transforms = []
if "max_distillation_msa_clusters" in mode_cfg:
transforms.append(
data_transforms.sample_msa_distillation(
mode_cfg.max_distillation_msa_clusters
)
)
if common_cfg.reduce_msa_clusters_by_max_templates:
pad_msa_clusters = mode_cfg.max_msa_clusters - mode_cfg.max_templates
else:
pad_msa_clusters = mode_cfg.max_msa_clusters
max_msa_clusters = pad_msa_clusters
max_extra_msa = common_cfg.max_extra_msa
msa_seed = None
if(not common_cfg.resample_msa_in_recycling):
msa_seed = ensemble_seed
transforms.append(
data_transforms.sample_msa(
max_msa_clusters,
keep_extra=True,
seed=msa_seed,
)
)
if "masked_msa" in common_cfg:
# Masked MSA should come *before* MSA clustering so that
# the clustering and full MSA profile do not leak information about
# the masked locations and secret corrupted locations.
transforms.append(
data_transforms.make_masked_msa(
common_cfg.masked_msa, mode_cfg.masked_msa_replace_fraction
)
)
if common_cfg.msa_cluster_features:
transforms.append(data_transforms.nearest_neighbor_clusters())
transforms.append(data_transforms.summarize_clusters())
# Crop after creating the cluster profiles.
if max_extra_msa:
transforms.append(data_transforms.crop_extra_msa(max_extra_msa))
else:
transforms.append(data_transforms.delete_extra_msa)
transforms.append(data_transforms.make_msa_feat())
crop_feats = dict(common_cfg.feat)
if mode_cfg.fixed_size:
transforms.append(data_transforms.select_feat(list(crop_feats)))
transforms.append(
data_transforms.random_crop_to_size(
mode_cfg.crop_size,
mode_cfg.max_templates,
crop_feats,
mode_cfg.subsample_templates,
seed=ensemble_seed + 1,
)
)
transforms.append(
data_transforms.make_fixed_size(
crop_feats,
pad_msa_clusters,
common_cfg.max_extra_msa,
mode_cfg.crop_size,
mode_cfg.max_templates,
)
)
else:
transforms.append(
data_transforms.crop_templates(mode_cfg.max_templates)
)
return transforms
def process_tensors_from_config(tensors, common_cfg, mode_cfg):
"""Based on the config, apply filters and transformations to the data."""
ensemble_seed = torch.Generator().seed()
def wrap_ensemble_fn(data, i):
"""Function to be mapped over the ensemble dimension."""
d = data.copy()
fns = ensembled_transform_fns(
common_cfg,
mode_cfg,
ensemble_seed,
)
fn = compose(fns)
d["ensemble_index"] = i
return fn(d)
no_templates = True
if("template_aatype" in tensors):
no_templates = tensors["template_aatype"].shape[0] == 0
nonensembled = nonensembled_transform_fns(
common_cfg,
mode_cfg,
)
tensors = compose(nonensembled)(tensors)
if("no_recycling_iters" in tensors):
num_recycling = int(tensors["no_recycling_iters"])
else:
num_recycling = common_cfg.max_recycling_iters
tensors = map_fn(
lambda x: wrap_ensemble_fn(tensors, x), torch.arange(num_recycling + 1)
)
return tensors
@data_transforms.curry1
def compose(x, fs):
for f in fs:
x = f(x)
return x
def map_fn(fun, x):
ensembles = [fun(elem) for elem in x]
features = ensembles[0].keys()
ensembled_dict = {}
for feat in features:
ensembled_dict[feat] = torch.stack(
[dict_i[feat] for dict_i in ensembles], dim=-1
)
return ensembled_dict