P2DFlow / openfold /utils /logger.py
Holmes
test
ca7299e
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import operator
import time
import dllogger as logger
import numpy as np
import torch.cuda.profiler as profiler
from dllogger import JSONStreamBackend, StdOutBackend, Verbosity
from pytorch_lightning import Callback
def is_main_process():
return int(os.getenv("LOCAL_RANK", "0")) == 0
class PerformanceLoggingCallback(Callback):
def __init__(self, log_file, global_batch_size, warmup_steps: int = 0, profile: bool = False):
logger.init(backends=[JSONStreamBackend(Verbosity.VERBOSE, log_file), StdOutBackend(Verbosity.VERBOSE)])
self.warmup_steps = warmup_steps
self.global_batch_size = global_batch_size
self.step = 0
self.profile = profile
self.timestamps = []
def do_step(self):
self.step += 1
if self.profile and self.step == self.warmup_steps:
profiler.start()
if self.step > self.warmup_steps:
self.timestamps.append(time.time())
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
self.do_step()
def on_test_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
self.do_step()
def process_performance_stats(self, deltas):
def _round3(val):
return round(val, 3)
throughput_imgps = _round3(self.global_batch_size / np.mean(deltas))
timestamps_ms = 1000 * deltas
stats = {
f"throughput": throughput_imgps,
f"latency_mean": _round3(timestamps_ms.mean()),
}
for level in [90, 95, 99]:
stats.update({f"latency_{level}": _round3(np.percentile(timestamps_ms, level))})
return stats
def _log(self):
if is_main_process():
diffs = list(map(operator.sub, self.timestamps[1:], self.timestamps[:-1]))
deltas = np.array(diffs)
stats = self.process_performance_stats(deltas)
logger.log(step=(), data=stats)
logger.flush()
def on_train_end(self, trainer, pl_module):
if self.profile:
profiler.stop()
self._log()
def on_epoch_end(self, trainer, pl_module):
self._log()