|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from Bio.SVDSuperimposer import SVDSuperimposer |
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
|
|
|
def _superimpose_np(reference, coords): |
|
|
""" |
|
|
Superimposes coordinates onto a reference by minimizing RMSD using SVD. |
|
|
|
|
|
Args: |
|
|
reference: |
|
|
[N, 3] reference array |
|
|
coords: |
|
|
[N, 3] array |
|
|
Returns: |
|
|
A tuple of [N, 3] superimposed coords and the final RMSD. |
|
|
""" |
|
|
sup = SVDSuperimposer() |
|
|
sup.set(reference, coords) |
|
|
sup.run() |
|
|
return sup |
|
|
|
|
|
def _superimpose_single(reference, coords): |
|
|
reference_np = reference.detach().cpu().numpy() |
|
|
coords_np = coords.detach().cpu().numpy() |
|
|
sup = _superimpose_np(reference_np, coords_np) |
|
|
rot, tran = sup.get_rotran() |
|
|
superimposed, rmsd = sup.get_transformed(), sup.get_rms() |
|
|
return coords.new_tensor(superimposed), coords.new_tensor(rmsd), rot, tran |
|
|
|
|
|
|
|
|
def superimpose(reference, coords, mask, return_transform=False): |
|
|
""" |
|
|
Superimposes coordinates onto a reference by minimizing RMSD using SVD. |
|
|
|
|
|
Args: |
|
|
reference: |
|
|
[*, N, 3] reference tensor |
|
|
coords: |
|
|
[*, N, 3] tensor |
|
|
mask: |
|
|
[*, N] tensor |
|
|
Returns: |
|
|
A tuple of [*, N, 3] superimposed coords and [*] final RMSDs. |
|
|
""" |
|
|
def select_unmasked_coords(coords, mask): |
|
|
return torch.masked_select( |
|
|
coords, |
|
|
(mask > 0.)[..., None], |
|
|
).reshape(-1, 3) |
|
|
|
|
|
batch_dims = reference.shape[:-2] |
|
|
flat_reference = reference.reshape((-1,) + reference.shape[-2:]) |
|
|
flat_coords = coords.reshape((-1,) + reference.shape[-2:]) |
|
|
flat_mask = mask.reshape((-1,) + mask.shape[-1:]) |
|
|
superimposed_list = [] |
|
|
rmsds = [] |
|
|
rots = [] |
|
|
trans = [] |
|
|
for r, c, m in zip(flat_reference, flat_coords, flat_mask): |
|
|
r_unmasked_coords = select_unmasked_coords(r, m) |
|
|
c_unmasked_coords = select_unmasked_coords(c, m) |
|
|
superimposed, rmsd, rot, tran = _superimpose_single( |
|
|
r_unmasked_coords, |
|
|
c_unmasked_coords |
|
|
) |
|
|
rots.append(rot) |
|
|
trans.append(tran) |
|
|
|
|
|
|
|
|
count = 0 |
|
|
superimposed_full_size = torch.zeros_like(r) |
|
|
for i, unmasked in enumerate(m): |
|
|
if(unmasked): |
|
|
superimposed_full_size[i] = superimposed[count] |
|
|
count += 1 |
|
|
|
|
|
superimposed_list.append(superimposed_full_size) |
|
|
rmsds.append(rmsd) |
|
|
|
|
|
superimposed_stacked = torch.stack(superimposed_list, dim=0) |
|
|
rmsds_stacked = torch.stack(rmsds, dim=0) |
|
|
rots_stacked = torch.tensor(np.stack(rots, axis=0), device=coords.device) |
|
|
trans_stacked = torch.tensor(np.stack(trans, axis=0), device=coords.device) |
|
|
|
|
|
superimposed_reshaped = superimposed_stacked.reshape( |
|
|
batch_dims + coords.shape[-2:] |
|
|
) |
|
|
rmsds_reshaped = rmsds_stacked.reshape( |
|
|
batch_dims |
|
|
) |
|
|
if return_transform: |
|
|
return superimposed_reshaped, rmsds_reshaped, rots_stacked, trans_stacked |
|
|
return superimposed_reshaped, rmsds_reshaped |
|
|
|