File size: 17,426 Bytes
5a87d8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import torch
import sys
sys.argv = ['']
from sklearn.preprocessing import StandardScaler
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from lightning.pytorch.utilities.combined_loader import CombinedLoader
import numpy as np
from scipy.spatial import cKDTree
import math
from functools import partial
from sklearn.cluster import KMeans, DBSCAN
import matplotlib.pyplot as plt
import pandas as pd
from torch.utils.data import TensorDataset

from train.parsers_sc import parse_args
args = parse_args()

class WeightedBranchedCellDataModule(pl.LightningDataModule):
    def __init__(self, args):
        super().__init__()
        self.save_hyperparameters()

        self.data_path = "./data/mouse_hematopoiesis.csv"
        self.batch_size = args.batch_size
        self.max_dim = args.dim
        self.whiten = args.whiten
        self.k = 20
        self.n_samples = 1429 
        self.num_timesteps = 3  # t=0, t=1, t=2
        self.split_ratios = args.split_ratios
        self.metric_clusters = args.metric_clusters
        self.args = args
        self._prepare_data()
        

    def _prepare_data(self):
        print("Preparing cell data in BranchedCellDataModule")
        
        df = pd.read_csv(self.data_path)
        
        # Build dictionary of coordinates by time
        coords_by_t = {
            t: df[df["samples"] == t][["x1","x2"]].values
            for t in sorted(df["samples"].unique())
        }
        n0 = coords_by_t[0].shape[0]  # Number of T=0 points
        self.n_samples = n0  # Update n_samples to match actual data if changes

        # Cluster the t=2 cells into two branches
        km = KMeans(n_clusters=2, random_state=42).fit(coords_by_t[2])
        df2 = df[df["samples"] == 2].copy()
        df2["branch"] = km.labels_
        
        cluster_counts = df2["branch"].value_counts().sort_index()
        print(cluster_counts)

        # Sample n0 points from each branch
        endpoints = {}
        for b in (0, 1):
            endpoints[b] = (
                df2[df2["branch"] == b]
                .sample(n=n0, random_state=42)[["x1","x2"]]
                .values
            )
            
        x0 = torch.tensor(coords_by_t[0], dtype=torch.float32) # T=0 coordinates index
        x_inter = torch.tensor(coords_by_t[1], dtype=torch.float32)
        x1_1 = torch.tensor(endpoints[0], dtype=torch.float32) # Branch index
        x1_2 = torch.tensor(endpoints[1], dtype=torch.float32) # Branch index

        self.coords_t0 = x0
        self.coords_t1 = x_inter
        self.coords_t2_1 = x1_1
        self.coords_t2_2 = x1_2
        self.time_labels = np.concatenate([
            np.zeros(len(self.coords_t0)),    # t=0
            np.ones(len(self.coords_t1)),     # t=1
            np.ones(len(self.coords_t2_1)) * 2,     # t=1
            np.ones(len(self.coords_t2_2)) * 2,
        ])
        
        split_index = int(n0 * self.split_ratios[0])
        
        if n0 - split_index < self.batch_size:
            split_index = n0 - self.batch_size

        train_x0 = x0[:split_index]
        val_x0 = x0[split_index:]
        train_x1_1 = x1_1[:split_index]
        val_x1_1 = x1_1[split_index:]
        train_x1_2 = x1_2[:split_index]
        val_x1_2 = x1_2[split_index:]
        
        self.val_x0 = val_x0
        
        train_x0_weights = torch.full((train_x0.shape[0], 1), fill_value=1.0)
        train_x1_1_weights = torch.full((train_x1_1.shape[0], 1), fill_value=0.5)
        train_x1_2_weights = torch.full((train_x1_2.shape[0], 1), fill_value=0.5)
        
        val_x0_weights = torch.full((val_x0.shape[0], 1), fill_value=1.0)
        val_x1_1_weights = torch.full((val_x1_1.shape[0], 1), fill_value=0.5)
        val_x1_2_weights = torch.full((val_x1_2.shape[0], 1), fill_value=0.5)

        if self.n_samples - split_index < self.batch_size:
            split_index = self.n_samples - self.batch_size
            
        self.train_dataloaders = {
            "x0": DataLoader(TensorDataset(train_x0, train_x0_weights), batch_size=self.batch_size, shuffle=True, drop_last=True),
            "x1_1": DataLoader(TensorDataset(train_x1_1, train_x1_1_weights), batch_size=self.batch_size, shuffle=True, drop_last=True),
            "x1_2": DataLoader(TensorDataset(train_x1_2, train_x1_2_weights), batch_size=self.batch_size, shuffle=True, drop_last=True),
        }
        
        self.val_dataloaders = {
            "x0": DataLoader(TensorDataset(val_x0, val_x0_weights), batch_size=self.batch_size, shuffle=False, drop_last=True),
            "x1_1": DataLoader(TensorDataset(val_x1_1, val_x1_1_weights), batch_size=self.batch_size, shuffle=True, drop_last=True),
            "x1_2": DataLoader(TensorDataset(val_x1_2, val_x1_2_weights), batch_size=self.batch_size, shuffle=True, drop_last=True),
        }

        all_data = np.vstack([coords_by_t[t] for t in sorted(coords_by_t.keys())])
        self.dataset = torch.tensor(all_data, dtype=torch.float32)
        self.tree = cKDTree(all_data)
        
        # if whitening is enabled, need to apply this to the full dataset
        #if self.whiten:
            #self.scaler = StandardScaler()
            #self.dataset = torch.tensor(
                #self.scaler.fit_transform(all_data), dtype=torch.float32
            #)
            
        self.test_dataloaders = {
            "x0": DataLoader(TensorDataset(val_x0, val_x0_weights), batch_size=self.val_x0.shape[0], shuffle=False, drop_last=False),
            "dataset": DataLoader(TensorDataset(self.dataset), batch_size=self.dataset.shape[0], shuffle=False, drop_last=False),
        }
        
        # Metric Dataloader
        # K-means clustering of ALL points into 2 groups
        if self.metric_clusters == 3:
            km_all = KMeans(n_clusters=3, random_state=45).fit(self.dataset.numpy())
            cluster_labels = km_all.labels_
            
            cluster_0_mask = cluster_labels == 0
            cluster_1_mask = cluster_labels == 1
            cluster_2_mask = cluster_labels == 2
            
            samples = self.dataset.cpu().numpy()
            
            cluster_0_data = samples[cluster_0_mask]
            cluster_1_data = samples[cluster_1_mask]
            cluster_2_data = samples[cluster_2_mask]
            
            self.metric_samples_dataloaders = [
                DataLoader(
                    torch.tensor(cluster_1_data, dtype=torch.float32),
                    batch_size=cluster_1_data.shape[0],
                    shuffle=False,
                    drop_last=False,
                ),
                DataLoader(
                    torch.tensor(cluster_2_data, dtype=torch.float32),
                    batch_size=cluster_2_data.shape[0],
                    shuffle=False,
                    drop_last=False,
                ),
                
                DataLoader(
                    torch.tensor(cluster_0_data, dtype=torch.float32),
                    batch_size=cluster_0_data.shape[0],
                    shuffle=False,
                    drop_last=False,
                ),
            ]
        else:
            km_all = KMeans(n_clusters=2, random_state=45).fit(self.dataset.numpy())
            cluster_labels = km_all.labels_
            
            cluster_0_mask = cluster_labels == 0
            cluster_1_mask = cluster_labels == 1
            
            samples = self.dataset.cpu().numpy()
            
            cluster_0_data = samples[cluster_0_mask]
            cluster_1_data = samples[cluster_1_mask]
            
            self.metric_samples_dataloaders = [
                DataLoader(
                    torch.tensor(cluster_1_data, dtype=torch.float32),
                    batch_size=cluster_1_data.shape[0],
                    shuffle=False,
                    drop_last=False,
                ),
                DataLoader(
                    torch.tensor(cluster_0_data, dtype=torch.float32),
                    batch_size=cluster_0_data.shape[0],
                    shuffle=False,
                    drop_last=False,
                ),
            ]


    def train_dataloader(self):
        combined_loaders = {
            "train_samples": CombinedLoader(self.train_dataloaders, mode="min_size"),
            "metric_samples": CombinedLoader(
                self.metric_samples_dataloaders, mode="min_size"
            ),
        }
        return CombinedLoader(combined_loaders, mode="max_size_cycle")

    def val_dataloader(self):
        combined_loaders = {
            "val_samples": CombinedLoader(self.val_dataloaders, mode="min_size"),
            "metric_samples": CombinedLoader(
                self.metric_samples_dataloaders, mode="min_size"
            ),
        }

        return CombinedLoader(combined_loaders, mode="max_size_cycle")

    def test_dataloader(self):
        combined_loaders = {
            "test_samples": CombinedLoader(self.test_dataloaders, mode="min_size"),
            "metric_samples": CombinedLoader(
                self.metric_samples_dataloaders, mode="min_size"
            ),
        }

        return CombinedLoader(combined_loaders, mode="max_size_cycle")

    def get_manifold_proj(self, points):
        """Adapted for 2D cell data - uses local neighborhood averaging instead of plane fitting"""
        return partial(self.local_smoothing_op, tree=self.tree, dataset=self.dataset)

    @staticmethod
    def local_smoothing_op(x, tree, dataset, k=10, temp=1e-3):
        """
        Apply local smoothing based on k-nearest neighbors in the full dataset
        This replaces the plane projection for 2D manifold regularization
        """
        points_np = x.detach().cpu().numpy()
        _, idx = tree.query(points_np, k=k)
        nearest_pts = dataset[idx]  # Shape: (batch_size, k, 2)
        
        # Compute weighted average of neighbors
        dists = (x.unsqueeze(1) - nearest_pts).pow(2).sum(-1, keepdim=True)
        weights = torch.exp(-dists / temp)
        weights = weights / weights.sum(dim=1, keepdim=True)
        
        # Weighted average of neighbors
        smoothed = (weights * nearest_pts).sum(dim=1)
        
        # Blend original point with smoothed version
        alpha = 0.3  # How much smoothing to apply
        return (1 - alpha) * x + alpha * smoothed
    
    def get_timepoint_data(self):
        """Return data organized by timepoints for visualization"""
        return {
            't0': self.coords_t0,
            't1': self.coords_t1, 
            't2_1': self.coords_t2_1, 
            't2_2': self.coords_t2_2, 
            'time_labels': self.time_labels
        }



class SingleBranchCellDataModule(pl.LightningDataModule):
    def __init__(self, args):
        super().__init__()
        self.save_hyperparameters()

        self.data_path = "./data/mouse_hematopoiesis.csv"
        self.batch_size = args.batch_size
        self.max_dim = args.dim
        self.whiten = args.whiten
        self.k = 20
        self.n_samples = 1429 
        self.num_timesteps = 3  # t=0, t=1, t=2
        self.split_ratios = args.split_ratios
        self.metric_clusters = 3
        self.args = args
        self._prepare_data()
        

    def _prepare_data(self):
        print("Preparing cell data in BranchedCellDataModule")
        
        df = pd.read_csv(self.data_path)
        
        # Build dictionary of coordinates by time
        coords_by_t = {
            t: df[df["samples"] == t][["x1","x2"]].values
            for t in sorted(df["samples"].unique())
        }
        n0 = coords_by_t[0].shape[0]  # Number of T=0 points
        self.n_samples = n0  # Update n_samples to match actual data if changes

        x0 = torch.tensor(coords_by_t[0], dtype=torch.float32) # T=0 coordinates index
        x_inter = torch.tensor(coords_by_t[1], dtype=torch.float32)
        x1 = torch.tensor(coords_by_t[2], dtype=torch.float32) # Branch index

        split_index = int(n0 * self.split_ratios[0])
        
        if n0 - split_index < self.batch_size:
            split_index = n0 - self.batch_size

        train_x0 = x0[:split_index]
        val_x0 = x0[split_index:]
        train_x1 = x1[:split_index]
        val_x1 = x1[split_index:]
        
        self.val_x0 = val_x0
        
        train_x0_weights = torch.full((train_x0.shape[0], 1), fill_value=1.0)
        train_x1_weights = torch.full((train_x1.shape[0], 1), fill_value=0.5)
        
        val_x0_weights = torch.full((val_x0.shape[0], 1), fill_value=1.0)
        val_x1_weights = torch.full((val_x1.shape[0], 1), fill_value=0.5)

        if self.n_samples - split_index < self.batch_size:
            split_index = self.n_samples - self.batch_size
            
        self.train_dataloaders = {
            "x0": DataLoader(TensorDataset(train_x0, train_x0_weights), batch_size=self.batch_size, shuffle=True, drop_last=True),
            "x1": DataLoader(TensorDataset(train_x1, train_x1_weights), batch_size=self.batch_size, shuffle=True, drop_last=True),
        }
        
        self.val_dataloaders = {
            "x0": DataLoader(TensorDataset(val_x0, val_x0_weights), batch_size=self.batch_size, shuffle=False, drop_last=True),
            "x1": DataLoader(TensorDataset(val_x1, val_x1_weights), batch_size=self.batch_size, shuffle=True, drop_last=True),
        }

        all_data = np.vstack([coords_by_t[t] for t in sorted(coords_by_t.keys())])
        self.dataset = torch.tensor(all_data, dtype=torch.float32)
        self.tree = cKDTree(all_data)
        
        # if whitening is enabled, need to apply this to the full dataset
        if self.whiten:
            self.scaler = StandardScaler()
            self.dataset = torch.tensor(
                self.scaler.fit_transform(all_data), dtype=torch.float32
            )
            
        self.test_dataloaders = {
            "x0": DataLoader(TensorDataset(val_x0, val_x0_weights), batch_size=self.val_x0.shape[0], shuffle=False, drop_last=False),
            "dataset": DataLoader(TensorDataset(self.dataset), batch_size=self.dataset.shape[0], shuffle=False, drop_last=False),
        }
        
        # Metric Dataloader
        # K-means clustering of ALL points into 2 groups
        km_all = KMeans(n_clusters=2, random_state=45).fit(self.dataset.numpy())
        cluster_labels = km_all.labels_
        
        cluster_0_mask = cluster_labels == 0
        cluster_1_mask = cluster_labels == 1
        
        samples = self.dataset.cpu().numpy()
        
        cluster_0_data = samples[cluster_0_mask]
        cluster_1_data = samples[cluster_1_mask]
        
        self.metric_samples_dataloaders = [
            DataLoader(
                torch.tensor(cluster_1_data, dtype=torch.float32),
                batch_size=cluster_1_data.shape[0],
                shuffle=False,
                drop_last=False,
            ),
            DataLoader(
                torch.tensor(cluster_0_data, dtype=torch.float32),
                batch_size=cluster_0_data.shape[0],
                shuffle=False,
                drop_last=False,
            ),
        ]


    def train_dataloader(self):
        combined_loaders = {
            "train_samples": CombinedLoader(self.train_dataloaders, mode="min_size"),
            "metric_samples": CombinedLoader(
                self.metric_samples_dataloaders, mode="min_size"
            ),
        }
        return CombinedLoader(combined_loaders, mode="max_size_cycle")

    def val_dataloader(self):
        combined_loaders = {
            "val_samples": CombinedLoader(self.val_dataloaders, mode="min_size"),
            "metric_samples": CombinedLoader(
                self.metric_samples_dataloaders, mode="min_size"
            ),
        }

        return CombinedLoader(combined_loaders, mode="max_size_cycle")

    def test_dataloader(self):
        combined_loaders = {
            "test_samples": CombinedLoader(self.test_dataloaders, mode="min_size"),
            "metric_samples": CombinedLoader(
                self.metric_samples_dataloaders, mode="min_size"
            ),
        }

        return CombinedLoader(combined_loaders, mode="max_size_cycle")

    def get_manifold_proj(self, points):
        """Adapted for 2D cell data - uses local neighborhood averaging instead of plane fitting"""
        return partial(self.local_smoothing_op, tree=self.tree, dataset=self.dataset)

    @staticmethod
    def local_smoothing_op(x, tree, dataset, k=10, temp=1e-3):
        """
        Apply local smoothing based on k-nearest neighbors in the full dataset
        This replaces the plane projection for 2D manifold regularization
        """
        points_np = x.detach().cpu().numpy()
        _, idx = tree.query(points_np, k=k)
        nearest_pts = dataset[idx]  # Shape: (batch_size, k, 2)
        
        # Compute weighted average of neighbors
        dists = (x.unsqueeze(1) - nearest_pts).pow(2).sum(-1, keepdim=True)
        weights = torch.exp(-dists / temp)
        weights = weights / weights.sum(dim=1, keepdim=True)
        
        # Weighted average of neighbors
        smoothed = (weights * nearest_pts).sum(dim=1)
        
        # Blend original point with smoothed version
        alpha = 0.3  # How much smoothing to apply
        return (1 - alpha) * x + alpha * smoothed

def get_datamodule():
    datamodule = WeightedBranchedCellDataModule(args)
    datamodule.setup(stage="fit")   
    return datamodule