Upload folder using huggingface_hub
Browse files- README.md +63 -0
- requirements.txt +6 -0
- tflite_inference.py +74 -0
README.md
CHANGED
|
@@ -1,3 +1,66 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- tensorflow-lite
|
| 5 |
+
- edge-ai
|
| 6 |
+
- asl-recognition
|
| 7 |
+
- mediapipe
|
| 8 |
+
- computer-vision
|
| 9 |
+
- gesture-recognition
|
| 10 |
+
library_name: tensorflow
|
| 11 |
+
inference: false
|
| 12 |
+
datasets: []
|
| 13 |
+
model-index:
|
| 14 |
+
- name: ASL-TFLite-Edge
|
| 15 |
+
results: []
|
| 16 |
---
|
| 17 |
+
|
| 18 |
+
# ASL-TFLite-Edge
|
| 19 |
+
|
| 20 |
+
This repository contains a TensorFlow Lite model trained to recognize American Sign Language (ASL) fingerspelling gestures using hand landmark data. The model is optimized for real-time inference on edge devices.
|
| 21 |
+
|
| 22 |
+
## 🧠 Model Details
|
| 23 |
+
|
| 24 |
+
- **Format:** TensorFlow Lite (.tflite)
|
| 25 |
+
- **Input:** 64x64 RGB image (generated from hand landmarks via Mediapipe)
|
| 26 |
+
- **Output:** Softmax probabilities over 59 ASL character classes (including a padding token)
|
| 27 |
+
- **Frameworks:** TensorFlow, Mediapipe
|
| 28 |
+
|
| 29 |
+
## 📁 Files Included
|
| 30 |
+
|
| 31 |
+
- `asl_model.tflite` – The TFLite model file for ASL recognition
|
| 32 |
+
- `inference_args.json` – JSON file containing the selected columns used for inference from parquet data
|
| 33 |
+
- `tflite_inference.py` – Inference script to run predictions from raw `.parquet` landmark files
|
| 34 |
+
|
| 35 |
+
## 🚀 How to Run Inference
|
| 36 |
+
|
| 37 |
+
### Requirements
|
| 38 |
+
```bash
|
| 39 |
+
pip install -r requirements.txt
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
### Run the Script
|
| 43 |
+
```bash
|
| 44 |
+
python tflite_inference.py path/to/sample.parquet
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### Output
|
| 48 |
+
```bash
|
| 49 |
+
Predicted class index: 5
|
| 50 |
+
```
|
| 51 |
+
>🔁 You can map this class index back to the character using your `char_to_num` mapping used during training.
|
| 52 |
+
|
| 53 |
+
## 📌 Example Workflow
|
| 54 |
+
1. Extract right-hand landmark data from Mediapipe and store it in a `.parquet` file.
|
| 55 |
+
|
| 56 |
+
2. Ensure it contains the same selected_columns as in `inference_args.json`.
|
| 57 |
+
|
| 58 |
+
3. Run `tflite_inference.py` to get the predicted class.
|
| 59 |
+
|
| 60 |
+
## 🧾 License
|
| 61 |
+
This project is licensed under the Apache 2.0 License.
|
| 62 |
+
|
| 63 |
+
## 👨💻 Author
|
| 64 |
+
Developed by Manik Sheokand
|
| 65 |
+
|
| 66 |
+
For sign language fingerspelling Recognition on edge devices using TensorFlow Lite
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow>=2.9.0
|
| 2 |
+
mediapipe>=0.10.0
|
| 3 |
+
pandas
|
| 4 |
+
scikit-image
|
| 5 |
+
pyarrow
|
| 6 |
+
matplotlib
|
tflite_inference.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import json
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
import mediapipe as mp
|
| 6 |
+
from skimage.transform import resize
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
from mediapipe.framework.formats import landmark_pb2
|
| 9 |
+
from PIL import Image
|
| 10 |
+
|
| 11 |
+
# Load selected columns for inference
|
| 12 |
+
with open("inference_args.json", "r") as f:
|
| 13 |
+
SEL_COLS = json.load(f)["selected_columns"]
|
| 14 |
+
|
| 15 |
+
# Load TFLite model
|
| 16 |
+
interpreter = tf.lite.Interpreter(model_path="asl_model.tflite")
|
| 17 |
+
interpreter.allocate_tensors()
|
| 18 |
+
input_details = interpreter.get_input_details()
|
| 19 |
+
output_details = interpreter.get_output_details()
|
| 20 |
+
|
| 21 |
+
# Drawing utilities
|
| 22 |
+
mp_drawing = mp.solutions.drawing_utils
|
| 23 |
+
mp_drawing_styles = mp.solutions.drawing_styles
|
| 24 |
+
mp_hands = mp.solutions.hands
|
| 25 |
+
|
| 26 |
+
def load_relevant_data_subset(pq_path):
|
| 27 |
+
return pd.read_parquet(pq_path, columns=SEL_COLS)
|
| 28 |
+
|
| 29 |
+
def draw_hand_landmarks(seq_df):
|
| 30 |
+
images = []
|
| 31 |
+
for seq_idx in range(len(seq_df)):
|
| 32 |
+
x_hand = seq_df.iloc[seq_idx].filter(regex="x_right_hand.*").values
|
| 33 |
+
y_hand = seq_df.iloc[seq_idx].filter(regex="y_right_hand.*").values
|
| 34 |
+
z_hand = seq_df.iloc[seq_idx].filter(regex="z_right_hand.*").values
|
| 35 |
+
|
| 36 |
+
right_hand_image = np.zeros((600, 600, 3))
|
| 37 |
+
right_hand_landmarks = landmark_pb2.NormalizedLandmarkList()
|
| 38 |
+
|
| 39 |
+
for x, y, z in zip(x_hand, y_hand, z_hand):
|
| 40 |
+
right_hand_landmarks.landmark.add(x=x, y=y, z=z)
|
| 41 |
+
|
| 42 |
+
mp_drawing.draw_landmarks(
|
| 43 |
+
right_hand_image,
|
| 44 |
+
right_hand_landmarks,
|
| 45 |
+
mp_hands.HAND_CONNECTIONS,
|
| 46 |
+
landmark_drawing_spec=mp_drawing_styles.get_default_hand_landmarks_style()
|
| 47 |
+
)
|
| 48 |
+
images.append(right_hand_image)
|
| 49 |
+
return images
|
| 50 |
+
|
| 51 |
+
def preprocess_image(image):
|
| 52 |
+
img = resize(image, (64, 64), preserve_range=True).astype(np.float32) / 255.0
|
| 53 |
+
return np.expand_dims(img, axis=0)
|
| 54 |
+
|
| 55 |
+
def predict_from_parquet(parquet_path):
|
| 56 |
+
df = load_relevant_data_subset(parquet_path)
|
| 57 |
+
image_seq = draw_hand_landmarks(df)
|
| 58 |
+
if not image_seq:
|
| 59 |
+
raise ValueError("No hand image generated.")
|
| 60 |
+
img = preprocess_image(image_seq[len(image_seq) // 2])
|
| 61 |
+
interpreter.set_tensor(input_details[0]['index'], img)
|
| 62 |
+
interpreter.invoke()
|
| 63 |
+
output = interpreter.get_tensor(output_details[0]['index'])
|
| 64 |
+
prediction = np.argmax(output)
|
| 65 |
+
return prediction
|
| 66 |
+
|
| 67 |
+
if __name__ == "__main__":
|
| 68 |
+
import sys
|
| 69 |
+
if len(sys.argv) < 2:
|
| 70 |
+
print("Usage: python tflite_inference.py <parquet_file_path>")
|
| 71 |
+
else:
|
| 72 |
+
parquet_file = sys.argv[1]
|
| 73 |
+
pred = predict_from_parquet(parquet_file)
|
| 74 |
+
print("Predicted class index:", pred)
|