Update README.md
Browse files
README.md
CHANGED
|
@@ -12,6 +12,7 @@ tags:
|
|
| 12 |
datasets:
|
| 13 |
- google/fleurs
|
| 14 |
- fsicoli/common_voice_22_0
|
|
|
|
| 15 |
language:
|
| 16 |
- en
|
| 17 |
- id
|
|
@@ -20,41 +21,28 @@ metrics:
|
|
| 20 |
base_model:
|
| 21 |
- openai/whisper-large-v3-turbo
|
| 22 |
model-index:
|
| 23 |
-
- name: Whisper Turbo Multilingual Fleurs + CV
|
| 24 |
results:
|
| 25 |
- task:
|
| 26 |
type: automatic-speech-recognition
|
| 27 |
name: Automatic Speech Recognition
|
| 28 |
dataset:
|
| 29 |
-
name:
|
| 30 |
-
type:
|
| 31 |
metrics:
|
| 32 |
- type: wer
|
| 33 |
-
value:
|
| 34 |
-
name: WER (English)
|
| 35 |
- type: wer
|
| 36 |
-
value:
|
| 37 |
-
name: WER (Indonesian)
|
| 38 |
-
- task:
|
| 39 |
-
type: automatic-speech-recognition
|
| 40 |
-
name: Automatic Speech Recognition
|
| 41 |
-
dataset:
|
| 42 |
-
name: Common Voice 22.0 (Indonesian & English)
|
| 43 |
-
type: fsicoli/common_voice_22_0
|
| 44 |
-
metrics:
|
| 45 |
-
- type: wer
|
| 46 |
-
value: 16.69
|
| 47 |
-
name: WER (English)
|
| 48 |
-
- type: wer
|
| 49 |
-
value: 11.41
|
| 50 |
-
name: WER (Indonesian)
|
| 51 |
---
|
| 52 |
|
| 53 |
-
# Whisper Turbo Fine-Tuned on FLEURS
|
| 54 |
|
| 55 |
-
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo). It was trained on a combination of **Google FLEURS
|
| 56 |
|
| 57 |
-
|
| 58 |
|
| 59 |
- **Developed by:** Dafis Nadhif Saputra
|
| 60 |
- **Model type:** Automatic Speech Recognition (ASR)
|
|
@@ -66,33 +54,41 @@ This model leverages **PEFT (LoRA)** to efficiently adapt the Whisper Large V3 T
|
|
| 66 |
|
| 67 |
## Evaluation Results
|
| 68 |
|
| 69 |
-
The model was evaluated
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
|
| 72 |
| :--- | :--- | :--- |
|
| 73 |
-
|
|
| 74 |
-
| **
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
## Training Details
|
| 79 |
|
| 80 |
-
### Data
|
| 81 |
-
The
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
- **Epochs:** 3
|
| 96 |
|
| 97 |
## How to Get Started with the Model
|
| 98 |
|
|
@@ -100,18 +96,24 @@ You can use the `pipeline` from the `transformers` library to easily transcribe
|
|
| 100 |
|
| 101 |
```python
|
| 102 |
from transformers import pipeline
|
|
|
|
| 103 |
|
| 104 |
# Replace with your model ID
|
| 105 |
model_id = "Dafisns/whisper-turbo-multilingual-fleurs"
|
| 106 |
|
| 107 |
# Initialize the pipeline
|
| 108 |
-
pipe = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
# Transcribe an audio file
|
| 111 |
# Ensure you specify the language code ('indonesian' or 'english') for better accuracy
|
|
|
|
| 112 |
# Example for Indonesian audio:
|
| 113 |
result = pipe("path_to_your_indonesian_audio.mp3", generate_kwargs={"language": "indonesian"})
|
| 114 |
-
|
| 115 |
print(result["text"])
|
| 116 |
|
| 117 |
# Example for English audio:
|
|
|
|
| 12 |
datasets:
|
| 13 |
- google/fleurs
|
| 14 |
- fsicoli/common_voice_22_0
|
| 15 |
+
- edinburghcstr/edacc
|
| 16 |
language:
|
| 17 |
- en
|
| 18 |
- id
|
|
|
|
| 21 |
base_model:
|
| 22 |
- openai/whisper-large-v3-turbo
|
| 23 |
model-index:
|
| 24 |
+
- name: Whisper Turbo Multilingual (Fleurs + CV + EdAcc)
|
| 25 |
results:
|
| 26 |
- task:
|
| 27 |
type: automatic-speech-recognition
|
| 28 |
name: Automatic Speech Recognition
|
| 29 |
dataset:
|
| 30 |
+
name: Combined Test Set (Fleurs + CV + EdAcc)
|
| 31 |
+
type: mixed
|
| 32 |
metrics:
|
| 33 |
- type: wer
|
| 34 |
+
value: 9.09
|
| 35 |
+
name: WER (English - Combined)
|
| 36 |
- type: wer
|
| 37 |
+
value: 6.97
|
| 38 |
+
name: WER (Indonesian - Combined)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
---
|
| 40 |
|
| 41 |
+
# Whisper Turbo Fine-Tuned on FLEURS, Common Voice & EdAcc (Indonesian & English)
|
| 42 |
|
| 43 |
+
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo). It was trained on a combination of **Google FLEURS**, **Common Voice 22.0**, and **Edinburgh International Accents (EdAcc)** datasets.
|
| 44 |
|
| 45 |
+
The training focuses specifically on **Indonesian (`id_id`)** and **English (`en_us`)**. A unique feature of this model is the inclusion of the EdAcc dataset to improve performance on **Indonesian-accented English**.
|
| 46 |
|
| 47 |
- **Developed by:** Dafis Nadhif Saputra
|
| 48 |
- **Model type:** Automatic Speech Recognition (ASR)
|
|
|
|
| 54 |
|
| 55 |
## Evaluation Results
|
| 56 |
|
| 57 |
+
The model was evaluated using two different schemes:
|
| 58 |
+
|
| 59 |
+
### 1. Internal Training Validation
|
| 60 |
+
Measured during the training process on a mixed validation set (all datasets combined).
|
| 61 |
|
| 62 |
+
| Epoch | Validation Loss | WER (%) |
|
| 63 |
| :--- | :--- | :--- |
|
| 64 |
+
| 1 | 0.2717 | 7.42% |
|
| 65 |
+
| **2** | **0.2638** | **7.33%** |
|
| 66 |
+
|
| 67 |
+
### 2. Final Standalone Evaluation
|
| 68 |
+
Measured after training on the full concatenated test sets for each language.
|
| 69 |
+
|
| 70 |
+
| Language | Dataset Source | WER (%) |
|
| 71 |
+
| :--- | :--- | :--- |
|
| 72 |
+
| **English** | Fleurs + Common Voice + EdAcc | **9.09%** |
|
| 73 |
+
| **Indonesian** | Fleurs + Common Voice | **6.97%** |
|
| 74 |
|
| 75 |
## Training Details
|
| 76 |
|
| 77 |
+
### Data Overview
|
| 78 |
+
The model was trained on approximately **15,000 samples** combining:
|
| 79 |
+
* **Google FLEURS** (Indonesian & English)
|
| 80 |
+
* **Common Voice 22.0** (Indonesian & English)
|
| 81 |
+
* **EdAcc** (English with Indonesian Accent)
|
| 82 |
+
|
| 83 |
+
### Hyperparameters (Summary)
|
| 84 |
+
The model was trained using **PEFT (LoRA)** to efficiently adapt the weights.
|
| 85 |
+
|
| 86 |
+
* **Learning Rate:** 5e-5
|
| 87 |
+
* **Batch Size:** 32 (Effective)
|
| 88 |
+
* **Epochs:** 2
|
| 89 |
+
* **Precision:** FP16
|
| 90 |
+
* **Optimizer:** AdamW
|
| 91 |
+
* **LoRA Rank:** 32
|
|
|
|
| 92 |
|
| 93 |
## How to Get Started with the Model
|
| 94 |
|
|
|
|
| 96 |
|
| 97 |
```python
|
| 98 |
from transformers import pipeline
|
| 99 |
+
import torch
|
| 100 |
|
| 101 |
# Replace with your model ID
|
| 102 |
model_id = "Dafisns/whisper-turbo-multilingual-fleurs"
|
| 103 |
|
| 104 |
# Initialize the pipeline
|
| 105 |
+
pipe = pipeline(
|
| 106 |
+
"automatic-speech-recognition",
|
| 107 |
+
model=model_id,
|
| 108 |
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
| 109 |
+
torch_dtype=torch.float16
|
| 110 |
+
)
|
| 111 |
|
| 112 |
# Transcribe an audio file
|
| 113 |
# Ensure you specify the language code ('indonesian' or 'english') for better accuracy
|
| 114 |
+
|
| 115 |
# Example for Indonesian audio:
|
| 116 |
result = pipe("path_to_your_indonesian_audio.mp3", generate_kwargs={"language": "indonesian"})
|
|
|
|
| 117 |
print(result["text"])
|
| 118 |
|
| 119 |
# Example for English audio:
|