--- library_name: transformers language: - ar license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - EMahdi/WhisperFinetune metrics: - wer model-index: - name: Whisper Large V3 Turbo Finetune Ar - EMahdi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: EMahdi/WhisperFinetune Sudanese Corpus type: EMahdi/WhisperFinetune args: 'config: sudanese_corpus, split: test' metrics: - name: Wer type: wer value: 42.80180761781795 --- # Whisper Large V3 Turbo Finetune Ar - EMahdi This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the EMahdi/WhisperFinetune Sudanese Corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.8721 - Wer: 42.8018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.2464 | 1.0 | 89 | 0.9025 | 71.2072 | | 0.7343 | 2.0 | 178 | 0.7835 | 55.7779 | | 0.5441 | 3.0 | 267 | 0.7463 | 56.3105 | | 0.4076 | 4.0 | 356 | 0.7532 | 47.5468 | | 0.325 | 5.0 | 445 | 0.7811 | 51.4526 | | 0.2635 | 6.0 | 534 | 0.8050 | 62.1369 | | 0.1866 | 7.0 | 623 | 0.8226 | 45.7715 | | 0.1171 | 8.0 | 712 | 0.8406 | 45.4810 | | 0.0679 | 9.0 | 801 | 0.8664 | 43.5119 | | 0.0399 | 10.0 | 890 | 0.8721 | 42.8018 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3