Update inference endpoint handler (20250927-165107)
Browse files- README.md +25 -0
- handler.py +418 -0
- requirements.txt +10 -0
README.md
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Qwen Omni Hugging Face Inference Endpoint Handler
|
| 2 |
+
|
| 3 |
+
This directory contains a reusable custom handler for deploying Qwen 3 Omni models
|
| 4 |
+
(via the Hugging Face Inference Endpoints service). The handler mirrors the
|
| 5 |
+
multi-modal interaction blueprint from the official Qwen audio/visual dialogue
|
| 6 |
+
cookbook and supports text, image, and audio turns in a single payload.
|
| 7 |
+
|
| 8 |
+
## Files
|
| 9 |
+
|
| 10 |
+
* `handler.py` – entry-point loaded by the Inference Endpoint runtime.
|
| 11 |
+
* `requirements.txt` – Python dependencies installed before the handler is imported.
|
| 12 |
+
|
| 13 |
+
## Usage
|
| 14 |
+
|
| 15 |
+
1. Upload the contents of this directory (`handler.py`, `requirements.txt`) to a
|
| 16 |
+
Hugging Face model repository that you control (defaults to
|
| 17 |
+
`GrandMasterPomidor/qwen-omni-endpoint-handler` via the provided Makefile).
|
| 18 |
+
2. Provision a custom Inference Endpoint that references that repository and the
|
| 19 |
+
Qwen Omni model weights you wish to serve. Set environment variables such as
|
| 20 |
+
`MODEL_ID` to point at your chosen checkpoint (e.g. `Qwen/Qwen2.5-Omni-Mini`).
|
| 21 |
+
3. Send JSON payloads to the endpoint as documented in the header docstring of
|
| 22 |
+
`handler.py`.
|
| 23 |
+
|
| 24 |
+
Refer to the accompanying `Makefile` for convenience targets to package and
|
| 25 |
+
push these assets.
|
handler.py
ADDED
|
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Custom Hugging Face Inference Endpoints handler for Qwen Omni models.
|
| 2 |
+
|
| 3 |
+
This handler is designed for multi-modal dialogue with the Qwen3 Omni models,
|
| 4 |
+
following the audio/visual dialogue cookbook in the Qwen repository. It loads
|
| 5 |
+
an Omni chat model, accepts mixed text, image, and audio content, and returns
|
| 6 |
+
an assistant reply that can be fed into subsequent turns.
|
| 7 |
+
|
| 8 |
+
Expected request payload structure (JSON):
|
| 9 |
+
{
|
| 10 |
+
"inputs": {
|
| 11 |
+
"messages": [
|
| 12 |
+
{
|
| 13 |
+
"role": "user",
|
| 14 |
+
"content": [
|
| 15 |
+
{"type": "text", "text": "Describe the picture"},
|
| 16 |
+
{"type": "image", "image_url": "https://.../photo.jpg"},
|
| 17 |
+
{"type": "audio", "audio_url": "https://.../clip.wav"}
|
| 18 |
+
]
|
| 19 |
+
}
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
"parameters": {
|
| 23 |
+
"max_new_tokens": 256,
|
| 24 |
+
"temperature": 0.7,
|
| 25 |
+
"top_p": 0.9
|
| 26 |
+
}
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
Supported content variants:
|
| 30 |
+
* Text: provide "text" or "value".
|
| 31 |
+
* Image: provide one of "image" (base64 string with optional data URI),
|
| 32 |
+
"image_url" (HTTP(S) URL), or "image_path" (path within the repository).
|
| 33 |
+
* Audio: provide either
|
| 34 |
+
- "audio"/"array" with float samples plus "sampling_rate" (Hz), or
|
| 35 |
+
- base64 data under "audio"/"audio_b64", or
|
| 36 |
+
- remote/local path via "audio_url"/"audio_path".
|
| 37 |
+
|
| 38 |
+
Environment variables:
|
| 39 |
+
* MODEL_ID (defaults to Qwen/Qwen3-Omni-30B-A3B-Instruct) – Hugging Face model repo.
|
| 40 |
+
* DEVICE (defaults to cuda if available else cpu) – Inference device override.
|
| 41 |
+
* DEVICE_MAP (defaults to auto when GPU available) – Passed to from_pretrained.
|
| 42 |
+
* TORCH_DTYPE (defaults to bfloat16 on GPU, float32 on CPU) – torch dtype name.
|
| 43 |
+
* MAX_NEW_TOKENS, TEMPERATURE, TOP_P, TOP_K, DO_SAMPLE – override defaults.
|
| 44 |
+
|
| 45 |
+
Returned payload:
|
| 46 |
+
{
|
| 47 |
+
"generated_text": "...assistant reply...",
|
| 48 |
+
"messages": [...messages augmented with assistant turn...],
|
| 49 |
+
"generation_kwargs": {...actual generation settings used...}
|
| 50 |
+
}
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
from __future__ import annotations
|
| 54 |
+
|
| 55 |
+
import base64
|
| 56 |
+
import io
|
| 57 |
+
import json
|
| 58 |
+
import os
|
| 59 |
+
from dataclasses import dataclass
|
| 60 |
+
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
| 61 |
+
|
| 62 |
+
import numpy as np
|
| 63 |
+
import torch
|
| 64 |
+
from PIL import Image
|
| 65 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
| 66 |
+
|
| 67 |
+
try:
|
| 68 |
+
import requests
|
| 69 |
+
except ImportError: # pragma: no cover - requests is available on endpoints but guard just in case
|
| 70 |
+
requests = None # type: ignore
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@dataclass
|
| 74 |
+
class AudioPayload:
|
| 75 |
+
"""Container for audio samples consumed by the Omni processor."""
|
| 76 |
+
|
| 77 |
+
array: np.ndarray
|
| 78 |
+
sampling_rate: int
|
| 79 |
+
|
| 80 |
+
def as_processor_input(self) -> Dict[str, Any]:
|
| 81 |
+
return {
|
| 82 |
+
"array": self.array.astype(np.float32),
|
| 83 |
+
"sampling_rate": int(self.sampling_rate),
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class EndpointHandler:
|
| 88 |
+
"""Hugging Face custom handler compatible with multi-modal Qwen Omni models."""
|
| 89 |
+
|
| 90 |
+
def __init__(self, path: str = "") -> None:
|
| 91 |
+
model_id = os.getenv(
|
| 92 |
+
"MODEL_ID") or path or "Qwen/Qwen3-Omni-30B-A3B-Instruct"
|
| 93 |
+
device_hint = os.getenv("DEVICE")
|
| 94 |
+
self.device = device_hint or (
|
| 95 |
+
"cuda" if torch.cuda.is_available() else "cpu")
|
| 96 |
+
dtype_name = os.getenv(
|
| 97 |
+
"TORCH_DTYPE",
|
| 98 |
+
"bfloat16" if self.device.startswith("cuda") else "float32",
|
| 99 |
+
)
|
| 100 |
+
torch_dtype = getattr(torch, dtype_name, None)
|
| 101 |
+
if torch_dtype is None:
|
| 102 |
+
raise ValueError(f"Unsupported TORCH_DTYPE value: {dtype_name}")
|
| 103 |
+
|
| 104 |
+
model_kwargs: Dict[str, Any] = {
|
| 105 |
+
"trust_remote_code": True,
|
| 106 |
+
"torch_dtype": torch_dtype,
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
device_map_env = os.getenv("DEVICE_MAP")
|
| 110 |
+
if device_map_env:
|
| 111 |
+
model_kwargs["device_map"] = device_map_env
|
| 112 |
+
elif self.device != "cpu":
|
| 113 |
+
model_kwargs["device_map"] = "auto"
|
| 114 |
+
|
| 115 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 116 |
+
model_id, **model_kwargs)
|
| 117 |
+
if model_kwargs.get("device_map") is None:
|
| 118 |
+
self.model.to(self.device)
|
| 119 |
+
|
| 120 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 121 |
+
model_id, trust_remote_code=True)
|
| 122 |
+
|
| 123 |
+
try:
|
| 124 |
+
generation_config = GenerationConfig.from_pretrained(model_id)
|
| 125 |
+
except Exception: # pragma: no cover - not all repos ship a config
|
| 126 |
+
generation_config = self.model.generation_config
|
| 127 |
+
self.base_generation_kwargs = self._extract_generation_kwargs(
|
| 128 |
+
generation_config)
|
| 129 |
+
|
| 130 |
+
# ---------------------------------------------------------------------
|
| 131 |
+
# Public API
|
| 132 |
+
# ---------------------------------------------------------------------
|
| 133 |
+
def __call__(self, data: Dict[str, Any], *args: Any, **kwargs: Any) -> Dict[str, Any]:
|
| 134 |
+
if not data:
|
| 135 |
+
raise ValueError("Empty payload received by handler")
|
| 136 |
+
|
| 137 |
+
payload = data.get("inputs") if isinstance(data, dict) else data
|
| 138 |
+
parameters = data.get("parameters", {}) if isinstance(
|
| 139 |
+
data, dict) else {}
|
| 140 |
+
|
| 141 |
+
messages = self._normalize_messages(payload)
|
| 142 |
+
processed_messages, images, audios = self._prepare_messages(messages)
|
| 143 |
+
|
| 144 |
+
chat_template = self.processor.apply_chat_template(
|
| 145 |
+
processed_messages,
|
| 146 |
+
add_generation_prompt=True,
|
| 147 |
+
tokenize=False,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
model_inputs = self.processor(
|
| 151 |
+
text=chat_template,
|
| 152 |
+
images=[img for img in images] if images else None,
|
| 153 |
+
audios=[aud.as_processor_input()
|
| 154 |
+
for aud in audios] if audios else None,
|
| 155 |
+
return_tensors="pt",
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
if hasattr(model_inputs, "to"):
|
| 159 |
+
model_inputs = model_inputs.to(self.model.device if hasattr(
|
| 160 |
+
self.model, "device") else self.device)
|
| 161 |
+
else:
|
| 162 |
+
model_inputs = {
|
| 163 |
+
k: v.to(self.model.device if hasattr(
|
| 164 |
+
self.model, "device") else self.device)
|
| 165 |
+
for k, v in model_inputs.items()
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
generation_kwargs = {**self.base_generation_kwargs, **parameters}
|
| 169 |
+
generation_kwargs.setdefault("return_dict_in_generate", True)
|
| 170 |
+
generation_kwargs.setdefault("output_scores", False)
|
| 171 |
+
|
| 172 |
+
with torch.inference_mode():
|
| 173 |
+
outputs = self.model.generate(**model_inputs, **generation_kwargs)
|
| 174 |
+
|
| 175 |
+
sequences = outputs.sequences if hasattr(
|
| 176 |
+
outputs, "sequences") else outputs
|
| 177 |
+
input_length = model_inputs["input_ids"].shape[-1]
|
| 178 |
+
generated_ids = sequences[:, input_length:]
|
| 179 |
+
generated_text = self.processor.batch_decode(
|
| 180 |
+
generated_ids,
|
| 181 |
+
skip_special_tokens=True,
|
| 182 |
+
clean_up_tokenization_spaces=True,
|
| 183 |
+
)[0].strip()
|
| 184 |
+
|
| 185 |
+
augmented_messages = list(messages) + [
|
| 186 |
+
{
|
| 187 |
+
"role": "assistant",
|
| 188 |
+
"content": [
|
| 189 |
+
{
|
| 190 |
+
"type": "text",
|
| 191 |
+
"text": generated_text,
|
| 192 |
+
}
|
| 193 |
+
],
|
| 194 |
+
}
|
| 195 |
+
]
|
| 196 |
+
|
| 197 |
+
return {
|
| 198 |
+
"generated_text": generated_text,
|
| 199 |
+
"messages": augmented_messages,
|
| 200 |
+
"generation_kwargs": generation_kwargs,
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
# ------------------------------------------------------------------
|
| 204 |
+
# Helpers
|
| 205 |
+
# ------------------------------------------------------------------
|
| 206 |
+
@staticmethod
|
| 207 |
+
def _extract_generation_kwargs(config: GenerationConfig) -> Dict[str, Any]:
|
| 208 |
+
defaults = {
|
| 209 |
+
"max_new_tokens": getattr(config, "max_new_tokens", 512),
|
| 210 |
+
"temperature": getattr(config, "temperature", 0.7),
|
| 211 |
+
"top_p": getattr(config, "top_p", 0.9),
|
| 212 |
+
"top_k": getattr(config, "top_k", None),
|
| 213 |
+
"do_sample": getattr(config, "do_sample", True),
|
| 214 |
+
}
|
| 215 |
+
|
| 216 |
+
env_overrides = {
|
| 217 |
+
"max_new_tokens": os.getenv("MAX_NEW_TOKENS"),
|
| 218 |
+
"temperature": os.getenv("TEMPERATURE"),
|
| 219 |
+
"top_p": os.getenv("TOP_P"),
|
| 220 |
+
"top_k": os.getenv("TOP_K"),
|
| 221 |
+
"do_sample": os.getenv("DO_SAMPLE"),
|
| 222 |
+
}
|
| 223 |
+
|
| 224 |
+
for key, value in env_overrides.items():
|
| 225 |
+
if value is None:
|
| 226 |
+
continue
|
| 227 |
+
if key == "do_sample":
|
| 228 |
+
defaults[key] = value.lower() == "true"
|
| 229 |
+
elif key == "max_new_tokens" or key == "top_k":
|
| 230 |
+
defaults[key] = int(value)
|
| 231 |
+
else:
|
| 232 |
+
defaults[key] = float(value)
|
| 233 |
+
return {k: v for k, v in defaults.items() if v is not None}
|
| 234 |
+
|
| 235 |
+
@staticmethod
|
| 236 |
+
def _normalize_messages(payload: Any) -> List[Dict[str, Any]]:
|
| 237 |
+
if isinstance(payload, str):
|
| 238 |
+
return [
|
| 239 |
+
{
|
| 240 |
+
"role": "user",
|
| 241 |
+
"content": [{"type": "text", "text": payload}],
|
| 242 |
+
}
|
| 243 |
+
]
|
| 244 |
+
if isinstance(payload, dict) and "messages" in payload:
|
| 245 |
+
return payload["messages"]
|
| 246 |
+
if isinstance(payload, dict):
|
| 247 |
+
text_value = payload.get("prompt") or payload.get("text")
|
| 248 |
+
if text_value:
|
| 249 |
+
return [
|
| 250 |
+
{
|
| 251 |
+
"role": payload.get("role", "user"),
|
| 252 |
+
"content": [{"type": "text", "text": text_value}],
|
| 253 |
+
}
|
| 254 |
+
]
|
| 255 |
+
raise ValueError(
|
| 256 |
+
"Unsupported input format. Provide `inputs.messages` or a raw text prompt.")
|
| 257 |
+
|
| 258 |
+
def _prepare_messages(
|
| 259 |
+
self, messages: Iterable[Dict[str, Any]]
|
| 260 |
+
) -> Tuple[List[Dict[str, Any]], List[Image.Image], List[AudioPayload]]:
|
| 261 |
+
processed_messages: List[Dict[str, Any]] = []
|
| 262 |
+
images: List[Image.Image] = []
|
| 263 |
+
audios: List[AudioPayload] = []
|
| 264 |
+
|
| 265 |
+
for message in messages:
|
| 266 |
+
role = message.get("role", "user")
|
| 267 |
+
raw_content = message.get("content")
|
| 268 |
+
if raw_content is None:
|
| 269 |
+
raise ValueError(f"Message without content: {message}")
|
| 270 |
+
|
| 271 |
+
if isinstance(raw_content, str):
|
| 272 |
+
raw_content = [{"type": "text", "text": raw_content}]
|
| 273 |
+
|
| 274 |
+
new_parts: List[Dict[str, Any]] = []
|
| 275 |
+
for part in raw_content:
|
| 276 |
+
part_type = part.get("type", "text")
|
| 277 |
+
|
| 278 |
+
if part_type == "text":
|
| 279 |
+
text = part.get("text") or part.get("value")
|
| 280 |
+
if text is None:
|
| 281 |
+
raise ValueError(f"Missing text value in part: {part}")
|
| 282 |
+
new_parts.append({"type": "text", "text": text})
|
| 283 |
+
|
| 284 |
+
elif part_type == "image":
|
| 285 |
+
image = self._load_image(part)
|
| 286 |
+
images.append(image)
|
| 287 |
+
new_parts.append({"type": "image", "image": image})
|
| 288 |
+
|
| 289 |
+
elif part_type == "audio":
|
| 290 |
+
audio_payload = self._load_audio(part)
|
| 291 |
+
audios.append(audio_payload)
|
| 292 |
+
new_parts.append(
|
| 293 |
+
{"type": "audio", "audio": audio_payload.as_processor_input()})
|
| 294 |
+
|
| 295 |
+
else:
|
| 296 |
+
raise ValueError(f"Unsupported content type: {part_type}")
|
| 297 |
+
|
| 298 |
+
processed_messages.append({"role": role, "content": new_parts})
|
| 299 |
+
|
| 300 |
+
return processed_messages, images, audios
|
| 301 |
+
|
| 302 |
+
# ------------------------------------------------------------------
|
| 303 |
+
# Loaders
|
| 304 |
+
# ------------------------------------------------------------------
|
| 305 |
+
def _load_image(self, part: Dict[str, Any]) -> Image.Image:
|
| 306 |
+
if "image" in part and isinstance(part["image"], Image.Image):
|
| 307 |
+
return part["image"]
|
| 308 |
+
if "image" in part and isinstance(part["image"], str):
|
| 309 |
+
return self._decode_image_string(part["image"])
|
| 310 |
+
if "image_b64" in part:
|
| 311 |
+
return self._decode_image_string(part["image_b64"])
|
| 312 |
+
if "image_path" in part:
|
| 313 |
+
return Image.open(part["image_path"]).convert("RGB")
|
| 314 |
+
if "image_url" in part:
|
| 315 |
+
data = self._fetch_remote(part["image_url"])
|
| 316 |
+
return Image.open(io.BytesIO(data)).convert("RGB")
|
| 317 |
+
raise ValueError(f"Cannot resolve image content from part: {part}")
|
| 318 |
+
|
| 319 |
+
def _load_audio(self, part: Dict[str, Any]) -> AudioPayload:
|
| 320 |
+
if "audio" in part and isinstance(part["audio"], dict) and "array" in part["audio"]:
|
| 321 |
+
array = np.asarray(part["audio"]["array"], dtype=np.float32)
|
| 322 |
+
sampling_rate = int(part["audio"].get(
|
| 323 |
+
"sampling_rate", part.get("sampling_rate", 16000)))
|
| 324 |
+
return AudioPayload(array=array, sampling_rate=sampling_rate)
|
| 325 |
+
|
| 326 |
+
if "array" in part:
|
| 327 |
+
array = np.asarray(part["array"], dtype=np.float32)
|
| 328 |
+
sampling_rate = int(part.get("sampling_rate", 16000))
|
| 329 |
+
return AudioPayload(array=array, sampling_rate=sampling_rate)
|
| 330 |
+
|
| 331 |
+
audio_bytes: Optional[bytes] = None
|
| 332 |
+
if "audio" in part and isinstance(part["audio"], str):
|
| 333 |
+
audio_bytes = self._maybe_read_bytes(part["audio"])
|
| 334 |
+
elif "audio_b64" in part:
|
| 335 |
+
audio_bytes = base64.b64decode(part["audio_b64"])
|
| 336 |
+
elif "audio_path" in part:
|
| 337 |
+
with open(part["audio_path"], "rb") as handle:
|
| 338 |
+
audio_bytes = handle.read()
|
| 339 |
+
elif "audio_url" in part:
|
| 340 |
+
audio_bytes = self._fetch_remote(part["audio_url"])
|
| 341 |
+
|
| 342 |
+
if audio_bytes is None:
|
| 343 |
+
raise ValueError(f"Cannot resolve audio content from part: {part}")
|
| 344 |
+
|
| 345 |
+
array, sampling_rate = self._decode_audio(audio_bytes)
|
| 346 |
+
return AudioPayload(array=array, sampling_rate=sampling_rate)
|
| 347 |
+
|
| 348 |
+
@staticmethod
|
| 349 |
+
def _decode_image_string(raw: str) -> Image.Image:
|
| 350 |
+
if raw.startswith("data:"):
|
| 351 |
+
raw = raw.split(",", 1)[1]
|
| 352 |
+
image_bytes = base64.b64decode(raw)
|
| 353 |
+
return Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 354 |
+
|
| 355 |
+
@staticmethod
|
| 356 |
+
def _maybe_read_bytes(value: str) -> bytes:
|
| 357 |
+
if os.path.exists(value):
|
| 358 |
+
with open(value, "rb") as handle:
|
| 359 |
+
return handle.read()
|
| 360 |
+
try:
|
| 361 |
+
if value.startswith("data:"):
|
| 362 |
+
value = value.split(",", 1)[1]
|
| 363 |
+
return base64.b64decode(value)
|
| 364 |
+
except Exception as exc:
|
| 365 |
+
raise ValueError(
|
| 366 |
+
"Provide either a file path or base64-encoded audio for 'audio'.") from exc
|
| 367 |
+
|
| 368 |
+
@staticmethod
|
| 369 |
+
def _decode_audio(raw_bytes: bytes) -> Tuple[np.ndarray, int]:
|
| 370 |
+
# Try python-soundfile first, fall back to torchaudio if available.
|
| 371 |
+
try:
|
| 372 |
+
import soundfile as sf
|
| 373 |
+
|
| 374 |
+
array, sampling_rate = sf.read(io.BytesIO(raw_bytes))
|
| 375 |
+
if array.ndim > 1:
|
| 376 |
+
array = np.mean(array, axis=1)
|
| 377 |
+
return array.astype(np.float32), int(sampling_rate)
|
| 378 |
+
except Exception:
|
| 379 |
+
pass
|
| 380 |
+
|
| 381 |
+
try:
|
| 382 |
+
import torchaudio
|
| 383 |
+
|
| 384 |
+
waveform, sampling_rate = torchaudio.load(io.BytesIO(raw_bytes))
|
| 385 |
+
array = waveform.mean(dim=0).numpy()
|
| 386 |
+
return array.astype(np.float32), int(sampling_rate)
|
| 387 |
+
except Exception as exc:
|
| 388 |
+
raise RuntimeError(
|
| 389 |
+
"Unable to decode audio bytes. Install 'soundfile' or 'torchaudio' in requirements."
|
| 390 |
+
) from exc
|
| 391 |
+
|
| 392 |
+
@staticmethod
|
| 393 |
+
def _fetch_remote(url: str) -> bytes:
|
| 394 |
+
if requests is None:
|
| 395 |
+
raise RuntimeError(
|
| 396 |
+
"requests is required to download remote resources")
|
| 397 |
+
response = requests.get(url, timeout=10)
|
| 398 |
+
response.raise_for_status()
|
| 399 |
+
return response.content
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
if __name__ == "__main__": # pragma: no cover - simple smoke test entry point
|
| 403 |
+
handler = EndpointHandler()
|
| 404 |
+
demo_payload = {
|
| 405 |
+
"inputs": {
|
| 406 |
+
"messages": [
|
| 407 |
+
{
|
| 408 |
+
"role": "user",
|
| 409 |
+
"content": [
|
| 410 |
+
{"type": "text", "text": "Describe the image"},
|
| 411 |
+
],
|
| 412 |
+
}
|
| 413 |
+
]
|
| 414 |
+
},
|
| 415 |
+
"parameters": {"max_new_tokens": 64},
|
| 416 |
+
}
|
| 417 |
+
response = handler(demo_payload)
|
| 418 |
+
print(json.dumps(response, indent=2))
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Dependencies for the Qwen Omni custom inference handler
|
| 2 |
+
transformers>=4.43.0
|
| 3 |
+
accelerate>=0.33.0
|
| 4 |
+
torch>=2.2.0
|
| 5 |
+
sentencepiece
|
| 6 |
+
numpy>=1.24
|
| 7 |
+
pillow>=10.0
|
| 8 |
+
requests>=2.31
|
| 9 |
+
soundfile>=0.12
|
| 10 |
+
torchaudio>=2.2
|