Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Grain Quality Classifier
|
| 3 |
+
emoji: 🌾
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: yellow
|
| 6 |
+
sdk: pytorch
|
| 7 |
+
app_file: app.py
|
| 8 |
+
pinned: false
|
| 9 |
+
license: mit
|
| 10 |
+
tags:
|
| 11 |
+
- grain
|
| 12 |
+
- agriculture
|
| 13 |
+
- computer-vision
|
| 14 |
+
- quality-control
|
| 15 |
+
- multi-task-learning
|
| 16 |
+
- pytorch
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Grain Quality Classification Model 🌾
|
| 20 |
+
|
| 21 |
+
A multi-task deep learning model for grain quality control, trained on Tesla T4 GPU.
|
| 22 |
+
|
| 23 |
+
## Model Description
|
| 24 |
+
|
| 25 |
+
This model performs multi-task learning for grain quality assessment:
|
| 26 |
+
- **Count Prediction**: Estimates total grain count in images
|
| 27 |
+
- **Good Grain Count**: Counts high-quality grains
|
| 28 |
+
- **Bad Grain Count**: Counts low-quality/damaged grains
|
| 29 |
+
- **Quality Classification**: Binary classification (good/bad dominant)
|
| 30 |
+
|
| 31 |
+
## Architecture
|
| 32 |
+
|
| 33 |
+
- **Backbone**: ResNet-50 (pre-trained on ImageNet)
|
| 34 |
+
- **Input Size**: 256x256 RGB images
|
| 35 |
+
- **Multi-task heads**: Separate heads for each prediction task
|
| 36 |
+
- **Training**: Mixed precision on Tesla T4 GPU
|
| 37 |
+
|
| 38 |
+
## Training Details
|
| 39 |
+
|
| 40 |
+
- **Epochs**: 28
|
| 41 |
+
- **Best Validation Loss**: 13.511258761088053
|
| 42 |
+
- **Optimizer**: AdamW with OneCycleLR scheduler
|
| 43 |
+
- **Data Augmentation**: Extensive augmentations for robustness
|
| 44 |
+
- **GPU**: Tesla T4 with mixed precision training
|
| 45 |
+
|
| 46 |
+
## Usage
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
import torch
|
| 50 |
+
from PIL import Image
|
| 51 |
+
import torchvision.transforms as transforms
|
| 52 |
+
|
| 53 |
+
# Load model
|
| 54 |
+
model = torch.load('pytorch_model.bin', map_location='cpu')
|
| 55 |
+
model.eval()
|
| 56 |
+
|
| 57 |
+
# Preprocessing
|
| 58 |
+
transform = transforms.Compose([
|
| 59 |
+
transforms.Resize((256, 256)),
|
| 60 |
+
transforms.ToTensor(),
|
| 61 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 62 |
+
])
|
| 63 |
+
|
| 64 |
+
# Inference
|
| 65 |
+
image = Image.open('grain_image.jpg').convert('RGB')
|
| 66 |
+
input_tensor = transform(image).unsqueeze(0)
|
| 67 |
+
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
outputs = model(input_tensor)
|
| 70 |
+
|
| 71 |
+
print(f"Count: {outputs['count'].item():.1f}")
|
| 72 |
+
print(f"Good grains: {outputs['good'].item():.1f}")
|
| 73 |
+
print(f"Bad grains: {outputs['bad'].item():.1f}")
|
| 74 |
+
print(f"Quality: {'Good' if outputs['quality'].argmax().item() == 1 else 'Bad'}")
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
## Model Performance
|
| 78 |
+
|
| 79 |
+
- Trained on agricultural grain dataset
|
| 80 |
+
- Multi-task learning approach
|
| 81 |
+
- Optimized for real-time quality control applications
|
| 82 |
+
|
| 83 |
+
## Citation
|
| 84 |
+
|
| 85 |
+
If you use this model, please cite:
|
| 86 |
+
|
| 87 |
+
```bibtex
|
| 88 |
+
@misc{grain_classifier_2025,
|
| 89 |
+
title={Grain Quality Classification Model},
|
| 90 |
+
author={Your Name},
|
| 91 |
+
year={2025},
|
| 92 |
+
howpublished={\url{https://huggingface.co/Hk4crprasad/grain-quality-classifier}}
|
| 93 |
+
}
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
## License
|
| 97 |
+
|
| 98 |
+
MIT License - See LICENSE file for details.
|