File size: 73,270 Bytes
f20b100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 |
import networkx as nx
from matplotlib import pyplot as plt
import numpy as np
# import cv2
from copy import copy, deepcopy
import random
from constraint_functions import get_above_constraint, get_behind_constraint, get_in_corner_constraint, get_in_front_constraint, get_left_of_constraint, get_right_of_constraint, get_on_constraint, get_under_contraint
ROOM_LAYOUT_ELEMENTS = ["south_wall", "north_wall", "west_wall", "east_wall", "ceiling", "middle of the room"]
def get_room_priors(room_dimensions):
x_mid = room_dimensions[0] / 2
y_mid = room_dimensions[1] / 2
z_mid = room_dimensions[2] / 2
room_priors = [
{"new_object_id": "south_wall", "itemType": "wall", "position": {"x": x_mid, "y": 0, "z": z_mid}, "size_in_meters": {"length": room_dimensions[0], "width": 0.0, "height": room_dimensions[2]}, "rotation": {"z_angle": 0.0}},
{"new_object_id": "north_wall", "itemType": "wall", "position": {"x": x_mid, "y": room_dimensions[1], "z": z_mid}, "size_in_meters": {"length": room_dimensions[0], "width": 0.0, "height": room_dimensions[2]}, "rotation": {"z_angle": 180.0}},
{"new_object_id": "east_wall", "itemType": "wall", "position": {"x": room_dimensions[0], "y": y_mid, "z": z_mid}, "size_in_meters": {"length": room_dimensions[1], "width": 0.0, "height": room_dimensions[2]}, "rotation": {"z_angle": 270.0}},
{"new_object_id": "west_wall", "itemType": "wall", "position": {"x": 0, "y": y_mid, "z": z_mid}, "size_in_meters": {"length": room_dimensions[1], "width": 0.0, "height": room_dimensions[2]}, "rotation": {"z_angle": 90.0}},
{"new_object_id": "middle of the room", "itemType": "floor", "position": {"x": x_mid, "y": y_mid, "z": 0}, "size_in_meters": {"length": room_dimensions[0], "width": room_dimensions[1], "height": 0.0}, "rotation": {"z_angle": 0.0}},
{"new_object_id": "ceiling", "itemType": "ceiling", "position": {"x": x_mid, "y": y_mid, "z": room_dimensions[2]}, "size_in_meters": {"length": room_dimensions[0], "width": room_dimensions[1], "height": 0.0}, "rotation": {"z_angle": 0.0}}
]
return room_priors
def extract_list_from_json(input_json, key):
if key in input_json and isinstance(input_json[key], list): # 检查键是否存在且值为列表
return input_json[key]
return None
def is_thin_object(obj):
"""
Returns True if the object is thin
"""
size = obj["size_in_meters"]
return min(size.values()) > 0.0 and max(size.values()) / min(size.values()) >= 40.0
def is_point_bbox(position):
"""
Returns whether the plausible bounding box is a point
"""
return np.isclose(position[0], position[1]) and np.isclose(position[2], position[3]) and np.isclose(position[4], position[5])
def get_rotation(obj_A, scene_graph):
# Get the rotation of an object in the scene graph
layout_rot = {
"west_wall" : 270.0,
"east_wall" : 90.0,
"north_wall" : 0.0,
"south_wall" : 180.0,
"middle of the room" : 0.0,
"ceiling" : 0.0
}
if "rotation" in obj_A.keys():
rot = obj_A["rotation"]["z_angle"]
elif "facing" in obj_A.keys() and obj_A["facing"] in layout_rot.keys():
if obj_A["facing"] == "middle of the room":
for element in obj_A["placement"]["room_layout_elements"]:
x = element["layout_element_id"]
if x == "west_wall":
rot = 90.0
elif x == "east_wall":
rot = 270.0
elif x == "north_wall":
rot = 180.0
else:
rot = 0.0
else:
rot = layout_rot[obj_A["facing"]]
elif obj_A["new_object_id"] in layout_rot.keys():
rot = layout_rot[obj_A["new_object_id"]]
else:
parents = []
for x in obj_A["placement"]["objects_in_room"]:
try:
p = [element for element in scene_graph if element.get("new_object_id") == x["object_id"]][0]
except:
print(f"Object {x['object_id']} not found in scene graph!")
raise ValueError("Object not found in scene graph!")
parents.append(p)
if len(parents) > 0:
parent = parents[0]
rot = get_rotation(parent, scene_graph)
else:
rot = 0.0
return rot
def find_key(dictionary, value):
for key, val in dictionary.items():
if val == value:
return key
return None
def get_conflicts(G, scene_graph, cot_data):
conflicts_wall = check_wall(G, scene_graph, cot_data)
conflicts_corner = check_corner(G, scene_graph, cot_data)
conflicts_occupancy = check_occupancy(G, scene_graph, cot_data)
conflicts_relationships = check_relationships(G, scene_graph, cot_data)
return conflicts_wall + conflicts_corner + conflicts_occupancy + conflicts_relationships
def get_size_conflicts(G, scene_graph, cot_data, user_input, room_priors, verbose=False):
conflicts_size = check_size(G, scene_graph, cot_data, user_input, room_priors, verbose)
return conflicts_size
def preprocess_scene_graph(scene_graph, cot_data):
# Correct the preposition for objects in the middle of the room
cot_data.append("Iterating through the objects in the scene graph and correcting the preposition for objects in the middle of the room.")
for obj in scene_graph:
cot_data.append(f"Checking whether the object {obj['new_object_id']} is not on the floor and whether it has a placement relationship with 'middle of the room'.")
if not obj["is_on_the_floor"] and "middle of the room" in [x["layout_element_id"] for x in obj["placement"]["room_layout_elements"]]:
# Delete that relationship
cot_data.append(f"The condition is met, remove the relationship with 'middle of the room' from the object {obj['new_object_id']}'s room layout elements.")
obj["placement"]["room_layout_elements"] = [x for x in obj["placement"]["room_layout_elements"] if x["layout_element_id"] != "middle of the room"]
else:
cot_data.append(f"The condition is not met, keep the object {obj['new_object_id']}'s room layout elements unchanged.")
cot_data.append(f"Iterating over each element in the object {obj['new_object_id']}'s room layout elements.")
for elem in obj["placement"]["room_layout_elements"]:
cot_data.append(f"Checking whether the object {obj['new_object_id']}'s preposition is 'in the corner' and whether its layout element id is either 'middle of the room' or 'ceiling'.")
if elem["preposition"] == "in the corner" and elem["layout_element_id"] in ["middle of the room", "ceiling"]:
cot_data.append(f"The condition is met, change the object {obj['new_object_id']}'s preposition to 'on'.")
elem["preposition"] = "on"
else:
cot_data.append(f"The condition is not met, keep the object {obj['new_object_id']}'s preposition unchanged.")
cot_data.append(f"Iterating through the related objects for the current object {obj['new_object_id']} in the same room.")
for elem in obj["placement"]["objects_in_room"]:
cot_data.append(f"Checking whether the related object for the current object {obj['new_object_id']} is in the middle of the room.")
if elem["object_id"] == "middle of the room":
# Delete that relationship
cot_data.append(f"The condition is met, remove the related object {elem['object_id']}.")
obj["placement"]["objects_in_room"] = [x for x in obj["placement"]["objects_in_room"] if x["object_id"] != "middle of the room"]
continue
else:
cot_data.append(f"The condition is not met, keep the related objects for the current object {obj['new_object_id']} unchanged.")
cot_data.append(f"Checking whether the object {elem['object_id']} is not found in the scene graph.")
if elem["object_id"] not in [x["new_object_id"] for x in scene_graph]:
cot_data.append(f"The object {elem['object_id']} is not found, try to find the closest matching object in the scene graph.")
closest_id = next(iter([x["new_object_id"] for x in scene_graph if elem["object_id"] in x["new_object_id"]]), None)
if closest_id is not None:
cot_data.append(f"A matching object is found, update the id of {elem['object_id']} with the closest match.")
elem["object_id"] = closest_id
else:
cot_data.append(f"No matching object is found for {elem['object_id']}, print an error message and raise a ValueError.")
print(f"Object {elem['object_id']} not found in scene graph!")
raise ValueError("Object not found in scene graph!")
else:
cot_data.append(f"The object {elem['object_id']} is found, there is no need to update the id.")
return scene_graph
def build_graph(scene_graph):
G = nx.DiGraph()
# Create graph
for obj in scene_graph:
if obj["new_object_id"] not in G.nodes():
G.add_node(obj["new_object_id"])
obj_scene_graph = obj["placement"]
for constraint in obj_scene_graph["room_layout_elements"]:
if constraint["layout_element_id"] not in G.nodes():
G.add_node(constraint["layout_element_id"])
G.add_edge(constraint["layout_element_id"], obj["new_object_id"], weight={"preposition" : constraint["preposition"], "adjacency" : True})
for constraint in obj_scene_graph["objects_in_room"]:
if constraint["object_id"] not in G.nodes():
G.add_node(constraint["object_id"])
G.add_edge(constraint["object_id"], obj["new_object_id"], weight={"preposition" : constraint["preposition"], "adjacency" : constraint["is_adjacent"]})
return G
def remove_unnecessary_edges(G, cot_data):
"""
Remove non-corner relationships if the object has a corner relationship
"""
topological_order = list(nx.topological_sort(G))
cot_data.append("Removing non-corner relationships if the object has a corner relationship. Computing the topological order of the nodes in the graph and iterating over each node in that order.")
for node in topological_order:
cot_data.append(f"Checking whether the current node {node} is not in room layout elements.")
if node not in ROOM_LAYOUT_ELEMENTS:
parents = list(G.predecessors(node))
cot_data.append(f"Checking whether any parent node of {node} has an edge to the current node with a preposition of 'in the corner'.")
if any([G[p][node]["weight"]["preposition"] == "in the corner" for p in parents]):
if len(parents) > 2:
# Remove the non-corner relationships
for p in parents:
if G[p][node]["weight"]["preposition"] != "in the corner":
print(f"Removing edge {p} -> {node} with preposition {G[p][node]['weight']['preposition']}")
cot_data.append(f"The current node {node} has more than two parent nodes and the preposition of the edge from the parent node {p} to the current node {node} is not 'in the corner', removing the edge {p} -> {node} with preposition {G[p][node]['weight']['preposition']} from the graph.")
G.remove_edge(p, node)
else:
cot_data.append(f"The edge {p} -> {node}'s preposition is 'in the corner' and does not need to be removed.")
else:
cot_data.append(f"The current node {node} has no more than two parent nodes. The edge of {node} does not need to be removed.")
else:
cot_data.append(f"No parent node of {node} has an edge to the current node {node} with a preposition of 'in the corner'. The edge of {node} does not need to be removed.")
else:
cot_data.append(f"The current node {node} is in room layout elements. The edge of {node} does not need to be removed.")
return G
def handle_under_prepositions(G, scene_graph, cot_data):
"""
For objects that are under another object, remove the object if it isn't a thin object
"""
nodes = G.nodes()
nodes_to_remove = []
cot_data.append("For objects that are under another object, remove the object if it isn't a thin object.")
cot_data.append("Iterating over each node in the graph.")
for node in nodes:
incoming_e = list(G.in_edges(node, data=True))
outgoing_e = list(G.out_edges(node, data=True))
under_obj = any([e[2]["weight"]["preposition"] == "under" for e in incoming_e])
cot_data.append(f"Getting the incoming and outgoing edges of the node {node} and checking whether any incoming edge has a preposition of 'under'.")
if under_obj:
obj = get_object_from_scene_graph(node, scene_graph)
cot_data.append(f"The current node {node} has an 'under' relationship, retrieve the corresponding object {obj} from the graph and check whether it is not a thin object.")
if not is_thin_object(obj):
nodes_to_remove.append(node)
cot_data.append(f"The object {obj} is not thin, add the current node {node} to the list of nodes to remove.")
for e in outgoing_e:
nodes_to_remove.append(e[1])
cot_data.append(f"For the outgoing edge from the current node {node}, add the target node {e[1]} to the list of nodes to remove.")
else:
cot_data.append(f"The object {obj} is thin and there is no need to remove the node {node}.")
else:
cot_data.append(f"The current node {node} has no 'under' relationship and does not need to be removed.")
for node in nodes_to_remove:
print("Removing node: ", node)
scene_graph = [x for x in scene_graph if x["new_object_id"] != node]
cot_data.append(f"Updating the scene graph by filtering out the object of the matching id with node {node}.")
if node in G.nodes():
G.remove_node(node)
cot_data.append(f"The node {node} exists in the graph, remove it from the graph.")
else:
cot_data.append(f"The node {node} does not exist in the graph and does not need to be removed.")
return G, scene_graph
def check_occupancy(G, scene_graph, cot_data):
def find_corner_vacancy():
# Find the corner that is not occupied
corners = [("south_wall", "west_wall"), ("south_wall", "east_wall"), ("north_wall", "west_wall"), ("north_wall", "east_wall")]
occupied_corners = []
for wall_1, wall_2 in corners:
for node in topological_order:
if node not in ROOM_LAYOUT_ELEMENTS:
parents = list(G.predecessors(node))
if wall_1 in parents and wall_2 in parents:
occupied_corners.append((wall_1, wall_2))
vacant_corners = list(set(corners) - set(occupied_corners))
return vacant_corners
def find_corner_occupancy():
# Find whether corners are occupied by more than one object
corners = [("south_wall", "west_wall"), ("south_wall", "east_wall"), ("north_wall", "west_wall"), ("north_wall", "east_wall")]
occupied_corners = {k : [] for k in corners}
for wall_1, wall_2 in corners:
for node in topological_order:
if node not in ROOM_LAYOUT_ELEMENTS:
parents = list(G.predecessors(node))
if wall_1 in parents and wall_2 in parents:
occupied_corners[(wall_1, wall_2)].append(node)
return occupied_corners
topological_order = list(nx.topological_sort(G))
conflicts = []
cot_data.append("Iterate through each corner and its occupying objects. Check whether corners are occupied by more than one object.")
corner_occupancy = find_corner_occupancy()
for key, value in corner_occupancy.items():
if len(value) > 1:
conflict_string = f"The corner {key[0].split('_')[0]}-{key[1].split('_')[0]} is occupied by more than one object: {value}. Move one of them to another vacant corner."
conflict_string += "\nVacant corners: " + str(find_corner_vacancy())
conflicts.append(conflict_string)
cot_data.append(f"The corner {key[0].split('_')[0]}-{key[1].split('_')[0]} is occupied by more than one object: {value}. Move one of them to another vacant corner. Vacant corners: {str(find_corner_vacancy())}.")
else:
cot_data.append(f"The corner {key[0].split('_')[0]}-{key[1].split('_')[0]} is not occupied by more than one object. There is no need to move the object.")
cot_data.append("Iterate through each node in the topological order of the graph and check whether objects with 'corner' relationship have two corresponding walls.")
for node in topological_order:
if node not in ROOM_LAYOUT_ELEMENTS:
parents = list(G.predecessors(node))
if any([G[p][node]["weight"]["preposition"] == "in the corner" for p in parents]):
if len(parents) == 1:
vacant_corners = find_corner_vacancy()
vacant_corners = [f"{c[0].split('_')[0]}-{c[1].split('_')[0]} corner" for c in vacant_corners]
conflict_string = f"Corner relationship for {node} has {len(parents)} parent, add another wall to the relationship. \n Current vacant corners: {vacant_corners}"
conflict_string += "\nObject to reposition: " + str(get_object_from_scene_graph(node, scene_graph))
conflicts.append(conflict_string)
cot_data.append(f"Corner relationship for {node} has {len(parents)} parent, add another wall to the relationship. Current vacant corners: {vacant_corners}. Object to reposition: {str(get_object_from_scene_graph(node, scene_graph))}.")
else:
cot_data.append(f"Corner relationship for {node} has {len(parents)} parent, keep the relationship unchanged.")
else:
cot_data.append(f"There is no corner relationship for the parent node of node {node}, keep the relationship unchanged.")
else:
cot_data.append(f"The node {node} is in room layout elements, keep the relationship unchanged.")
return conflicts
directional_preps = ["in front", "left of", "behind", "right of"]
def check_corner(G, scene_graph, cot_data):
conflicts = []
wall_impossible_preps = {
"south_wall" : "behind",
"north_wall" : "in front",
"west_wall" : "left of",
"east_wall" : "right of"
}
topological_order = list(nx.topological_sort(G))
cot_data.append("Iterate through each node in the topological order of the graph and check for impossible relationships in corners.")
for node in topological_order:
if node not in ROOM_LAYOUT_ELEMENTS:
parents_raw = list(G.predecessors(node))
parents = list(filter(lambda x : x not in ROOM_LAYOUT_ELEMENTS, parents_raw))
parents_rot = [get_rotation(next((x for x in scene_graph if x["new_object_id"] == p), None), scene_graph) for p in parents]
cot_data.append(f"Get the list of all parent nodes connected to the current node {node}, keep only the object parents and retrieve the rotation.")
cot_data.append(f"Check whether the parent object of node {node} is in the corner and whether this object is located spatially correctly.")
for p, r in zip(parents, parents_rot):
p_parent = list(G.predecessors(p))
corners = [p_p for p_p in p_parent if G[p_p][p]["weight"]["preposition"] == "in the corner"]
impossible_preps = []
cot_data.append(f"Filter the parent walls to find those that form a corner relationship with the parent object {p}.")
if len(corners) != 2:
cot_data.append(f"The parent object {p} is not in a corner, skip to the next iteration.")
continue
cot_data.append(f"Iterate through the two corner walls of the parent object {p}.")
for p_p in corners:
corner_name = corners[0].split('_')[0] + "-" + corners[1].split('_')[0] + " corner"
impossible_prep = wall_impossible_preps[p_p]
idx = directional_preps.index(impossible_prep)
rotated_idx = int((idx + (r // 90)) % len(directional_preps))
impossible_prep = directional_preps[rotated_idx]
impossible_preps.append(impossible_prep)
cot_data.append(f"Retrieve the impossible preposition for the current corner wall {p_p} and adjust the index based on the rotation of the parent object {p} to account for the object {p_p}'s orientation.")
cot_data.append(f"Impossible prep for {p} with rotation {r}: {impossible_prep}.")
cot_data.append(f"Check whether the preposition of the relationship between the parent object {p} and the current node {node} is one of the impossible prepositions.")
if G[p][node]["weight"]["preposition"] in impossible_preps:
cot_data.append(f"Impossible relationship between {node} and {p} with rotation {r} and relationship {G[p][node]['weight']}.")
conflict_string = [
f"The object {node} cannot be {G[p][node]['weight']['preposition']} the object {p} as it would be placed out of bounds. ",
f"The {impossible_preps[0]} and {impossible_preps[1]} the object are out of bounds. Find another relationship for {node} either with {p}, on the {corners[0]} or on the {corners[1]}!",
f"This relationship has to be exclusive, you cannot have two objects with the same relative positioning. IMPORTANT: you can only have one relationship in the new scene graph!!!",
]
conflict_string = "\n".join(conflict_string)
conflict_string += f"The object {p} is on the {corner_name}. "
conflict_string += " ".join([f"{p} has the object {edge[1]} {edge[2]['weight']['preposition']} it." for edge in G.out_edges(p, data=True) if edge[1] != node and edge[2]["weight"]["adjacency"]])
conflict_string += "\nObject to reposition: " + str(get_object_from_scene_graph(node, scene_graph))
conflicts.append(conflict_string)
cot_data.append(conflict_string)
else:
cot_data.append(f"The relationship between the parent object {p} and the current node {node} is not one of the impossible prepositions. Keep the relationship unchanged.")
else:
cot_data.append(f"The node {node} is in room layout elements. Keep the relationship unchanged.")
return conflicts
def check_wall(G, scene_graph, cot_data):
conflicts = []
wall_impossible_preps = {
"south_wall" : "behind",
"north_wall" : "in front",
"west_wall" : "left of",
"east_wall" : "right of"
}
topological_order = list(nx.topological_sort(G))
cot_data.append("Iterate through each node in the topological order of the graph and check for impossible relationships in walls.")
for node in topological_order:
if node not in ROOM_LAYOUT_ELEMENTS:
parents_raw = list(G.predecessors(node))
parents = list(filter(lambda x : x not in ROOM_LAYOUT_ELEMENTS, parents_raw))
parents_rot = [get_rotation(next((x for x in scene_graph if x["new_object_id"] == p), None), scene_graph) for p in parents]
cot_data.append(f"Get the list of all parent nodes connected to the current node {node}, keep only the object parents and retrieve the rotation.")
cot_data.append(f"Check whether the parent object of the node {node} is on the wall and whether this object is located spatially correctly.")
for p, r in zip(parents, parents_rot):
p_parent_raw = list(G.predecessors(p))
p_parent = list(filter(lambda x : x in wall_impossible_preps.keys(), p_parent_raw))
walls = [p_p for p_p in p_parent if G[p_p][p]["weight"]["preposition"] == "on"]
cot_data.append(f"Filter the wall nodes to keep only those that have a 'on' preposition relationship with the parent object {p}. Iterate over each wall that the parent object {p} is on.")
for p_p in walls:
impossible_prep = wall_impossible_preps[p_p]
idx = directional_preps.index(impossible_prep)
rotated_idx = int((idx + (r // 90)) % len(directional_preps))
impossible_prep = directional_preps[rotated_idx]
cot_data.append(f"Retrieve the impossible preposition for the current wall {p_p} and adjust the index based on the rotation of the parent object {p} to account for the object {p_p}'s orientation.")
cot_data.append(f"Impossible prep for {p} with rotation {r}: {impossible_prep}.")
cot_data.append(f"Check whether the preposition of the relationship between the parent object {p} and the current node {node} is one of the impossible prepositions.")
if G[p][node]["weight"]["preposition"] == impossible_prep:
conflict_string = [
f"The object {node} cannot be {G[p][node]['weight']['preposition']} the object {p} as it would be placed out of bounds. ",
f"The {impossible_prep} the object is out of bounds. Find another relationship for {node} either with {p} or on the {p_p}!",
f"This relationship has to be exclusive, you cannot have two objects with the same relative positioning. IMPORTANT: you can only have one relationship in the new scene graph!!!",
]
conflict_string = "\n".join(conflict_string)
conflict_string += f"The object {p} is on the {p_p}. "
conflict_string += " ".join([f"{p} has the object {edge[1]} {edge[2]['weight']['preposition']} it." for edge in G.out_edges(p, data=True) if edge[1] != node and edge[2]["weight"]["adjacency"]])
conflict_string += "\nObject to reposition: " + str(get_object_from_scene_graph(node, scene_graph))
conflicts.append(conflict_string)
cot_data.append(conflict_string)
else:
cot_data.append(f"The relationship between the parent object {p} and the current node {node} is not one of the impossible prepositions. Keep the relationship unchanged.")
else:
cot_data.append(f"The node {node} is in room layout elements. Keep the relationship unchanged.")
return conflicts
def check_relationships(G, scene_graph, cot_data):
conflicts = []
topological_order = list(nx.topological_sort(G))
cot_data.append("Check for impossible relationships between objects.")
for node in topological_order:
if node not in ROOM_LAYOUT_ELEMENTS:
parents_raw = list(G.predecessors(node))
parents = list(filter(lambda x : x not in ROOM_LAYOUT_ELEMENTS, parents_raw))
children = list(G.successors(node))
node_rot = get_rotation(next((x for x in scene_graph if x["new_object_id"] == node), None), scene_graph)
# Adjacent child exclusivity
cot_data.append(f"Filter out room layout elements to keep only objects of the parent node of {node}. Get all the child nodes and find the rotation of the current node {node}. Check for conflicts where two objects cannot be adjacent in certain ways.")
for p in parents:
prep = G[p][node]["weight"]["preposition"]
adj = G[p][node]["weight"]["adjacency"]
if prep in directional_preps and adj:
idx = directional_preps.index(prep)
rotated_idx = int((idx + (node_rot // 90)) % len(directional_preps))
impossible_prep = directional_preps[(rotated_idx + 2) % len(directional_preps)]
cot_data.append(f"Calculate the rotated index of the preposition based on the rotation of the current node {node}. Determine the impossible preposition of {p} by rotating the index by 180 degrees.")
for c in children:
if G[node][c]["weight"]["preposition"] == impossible_prep and G[node][c]["weight"]["adjacency"]:
conflict_string = f"The object {c} cannot be {G[node][c]['weight']['preposition']} of the object {node} since the {p} object is there. Find another relationship for {c} with {node}!"
conflict_string += "\nObject to reposition: " + str(get_object_from_scene_graph(c, scene_graph))
conflicts.append(conflict_string)
cot_data.append(f"Impossible relationship between {node} and {c} with rotation {node_rot} and relationship {G[node][c]['weight']['preposition']}.")
cot_data.append(conflict_string)
else:
cot_data.append(f"The relationship between the child object {c} and the current node {node} is not the impossible preposition. Keep the relationship unchanged.")
else:
cot_data.append(f"The parent object {p} is not adjacent to the current node {node}, thus having no influence on the child nodes of {node}.")
else:
cot_data.append(f"The node {node} is in room layout elements. Keep the relationship unchanged.")
return conflicts
def get_cluster_size(node, G, scene_graph, cot_data):
cot_data.append(f"Get the size of the cluster of {node}.")
node_obj = get_object_from_scene_graph(node, scene_graph)
try:
node_obj_rot = get_rotation(node_obj, scene_graph)
except:
print(f"Node: {node}")
raise ValueError("Error in getting the rotation of the object!")
# Get the outgoing edges
outgoing_e = list(G.out_edges(node, data=True))
outgoing_nodes = [edge[1] for edge in outgoing_e]
# Get the topological order of the outgoing nodes
topological_order_reversed = list(reversed(list(nx.topological_sort(G))))
topological_outgoing_nodes = [node for node in topological_order_reversed if node in outgoing_nodes]
outgoing_e_sorted = sorted(outgoing_e, key=lambda x : topological_outgoing_nodes.index(x[1]))
size_constraint = {"left of" : 0.0, "right of" : 0.0, "behind" : 0.0, "in front" : 0.0}
# cot_data.append(f"Set the size constraint as {size_constraint} for each direction of {node}.")
children_objs = set()
if len(outgoing_e_sorted) != 0:
cot_data.append(f"There exists {len(outgoing_e_sorted)} child objects: {[edge[1] for edge in outgoing_e_sorted]}.")
for idx, edge in enumerate(outgoing_e_sorted):
# Check if the child object is already in the children objects
index = idx + 1
if edge[1] in children_objs:
cot_data.append(f"The <{index}> child object {edge[1]} is already processed. Skip.")
continue
else:
cot_data.append(f"Process the <{index}> child object {edge[1]}.")
# Check if the preposition is a directional preposition
if edge[2]["weight"]["preposition"] not in directional_preps:
cot_data.append(f"The preposition <{edge[2]['weight']['preposition']}> between {edge[1]} and {node} is not a directional preposition. Skip.")
continue
else:
cot_data.append(f"The preposition <{edge[2]['weight']['preposition']}> between {edge[1]} and {node} is a directional preposition. Consider {edge[1]}.")
edge_obj = get_object_from_scene_graph(edge[1], scene_graph)
children_objs.add(edge[1])
edge_obj_rot = get_rotation(edge_obj, scene_graph)
rot_diff = abs(node_obj_rot - edge_obj_rot)
cot_data.append(f"To determine spatial relationships, we calculate rotation difference. The rotation of {node} and {edge[1]} are {node_obj_rot} and {edge_obj_rot}, the absolute difference is |{node_obj_rot} - {edge_obj_rot}| = {rot_diff}.")
prep = edge[2]["weight"]["preposition"]
adj = edge[2]["weight"]["adjacency"]
# Find the side of the child object to add to the size constraint
direction_check = lambda diff, prep: (diff % 180 == 0 and prep in ["left of", "right of"]) or (diff % 90 == 0 and prep in ["in front", "behind"])
size_constraint_key = "length" if direction_check(rot_diff, prep) else "width"
side_to_add = ("left of", "right of") if size_constraint_key == "length" else ("in front", "behind")
cot_data.append(f"The rotation difference and preposition between {edge[1]} and {node} are {rot_diff} and <{prep}>, use the {size_constraint_key} dimension in size constraint calculation.")
cot_data.append(f"Add the <{side_to_add}> side of {edge[1]} to size constraint based on the chosen dimension {size_constraint_key}.")
size_constraint_value = edge_obj["size_in_meters"][size_constraint_key]
# Retrieve the size of the cluster and the additional descendants of the child object
edge_cluster_size, edge_children = get_cluster_size(edge[1], G, scene_graph, cot_data)
children_objs = children_objs.union(edge_children)
cot_data.append(f"The cluster size of child {edge[1]} is {edge_cluster_size} through recursion.")
# Adjust the size constraint based on the preposition
constraints = ["left of", "right of", "in front", "behind"]
value_to_add = size_constraint_value + edge_cluster_size[side_to_add[0]] + edge_cluster_size[side_to_add[1]]
cot_data.append(f"Considering the child object {edge[1]}'s size {size_constraint_value} and its cluster size {edge_cluster_size[side_to_add[0]]} in {side_to_add[0]}, {edge_cluster_size[side_to_add[1]]} in {side_to_add[1]}, the total size to add to the constraint is {size_constraint_value} + {edge_cluster_size[side_to_add[0]]} + {edge_cluster_size[side_to_add[1]]} = {value_to_add}.")
if prep in constraints:
cot_data.append(f"The preposition <{prep}> between {edge[1]} and {node} is directional constraint.")
if adj:
m = size_constraint[prep]
size_constraint[prep] = max(m, value_to_add)
cot_data.append(f"{edge[1]} and {node} are adjacent, size constraint in <{prep}> = max({m}, {value_to_add}) = {size_constraint[prep]}.")
else:
m = size_constraint[prep]
size_constraint[prep] += value_to_add
cot_data.append(f"{edge[1]} and {node} are not adjacent, size constraint in <{prep}> = {m} + {value_to_add} = {size_constraint[prep]}.")
else:
cot_data.append(f"The preposition <{prep}> between {edge[1]} and {node} is not directional constraint. Ignore the child object {edge[1]}'s size. The size constraint is {size_constraint}.")
else:
cot_data.append(f"{node} has no child, size constraint is {size_constraint}.")
return size_constraint, children_objs
def check_size(G, scene_graph, cot_data, user_input, room_priors, verbose=False):
conflicts = []
topological_order_reversed = list(reversed(list(nx.topological_sort(G))))
if verbose:
for node in topological_order_reversed:
if node not in ROOM_LAYOUT_ELEMENTS:
clstr_size, children_objs = get_cluster_size(node, G, scene_graph, cot_data)
# Find cluster size conflicts
for node in topological_order_reversed:
if node not in ROOM_LAYOUT_ELEMENTS:
node_obj = get_object_from_scene_graph(node, scene_graph)
node_obj_rot = get_rotation(node_obj, scene_graph)
outgoing_e = list(G.out_edges(node, data=True))
size_constraint = {"left of" : 0.0, "right of" : 0.0, "behind" : 0.0, "in front" : 0.0, "on" : [0.0, 0.0]}
for edge in outgoing_e:
edge_obj = get_object_from_scene_graph(edge[1], scene_graph)
edge_obj_rot = get_rotation(edge_obj, scene_graph)
rot_diff = abs(node_obj_rot - edge_obj_rot)
prep = edge[2]["weight"]["preposition"]
adj = edge[2]["weight"]["adjacency"]
direction_check = lambda diff, prep: (diff % 180 == 0 and prep in ["left of", "right of"]) or (diff % 90 == 0 and prep in ["in front", "behind"])
size_constraint_key = "width" if direction_check(rot_diff, prep) else "length"
if prep not in directional_preps and prep != "on":
continue
size_constraint_value = edge_obj["size_in_meters"][size_constraint_key]
if adj:
if prep in ["left of", "right of", "in front", "behind"]:
size_constraint[prep] += size_constraint_value
elif prep == "on":
if rot_diff % 180 == 0:
size_constraint["on"][0] += edge_obj["size_in_meters"]["length"]
size_constraint["on"][1] += edge_obj["size_in_meters"]["width"]
else:
size_constraint["on"][0] += edge_obj["size_in_meters"]["width"]
size_constraint["on"][1] += edge_obj["size_in_meters"]["length"]
for prep in ["in front", "behind", "left of", "right of"]:
constraint_key = "length" if prep in ["in front", "behind"] else "width"
if node_obj["size_in_meters"][constraint_key] < size_constraint[prep]:
conflict_str = f"The {constraint_key} of the object {node} is too small to accommodate the following object {prep} of it!"
nodes = [edge[1] for edge in outgoing_e if edge[2]["weight"]["preposition"] == prep]
conflict_str += "\nDelete one of these nodes depending on which one is the least important for the user preference and the room's functionality: "
conflict_str += ", ".join(nodes)
conflict_str += f"\nUser preference: {user_input}"
conflicts.append(conflict_str)
if node_obj["size_in_meters"]["length"] < size_constraint["on"][0] or node_obj["size_in_meters"]["width"] < size_constraint["on"][1]:
nodes = [edge[1] for edge in outgoing_e if edge[2]["weight"]["preposition"] == "on"]
conflict_str = f"The area of the {node} is too small to accommodate all of the following objects on it!"
conflict_str += "\nDelete one of these nodes depending on which one is the least important for the user preference and the room's functionality: "
conflict_str += ", ".join(nodes)
conflict_str += f"\nUser preference: {user_input}"
conflicts.append(conflict_str)
if node in ROOM_LAYOUT_ELEMENTS:
node_obj = get_object_from_scene_graph(node, room_priors)
node_obj_rot = get_rotation(node_obj, scene_graph)
outgoing_e = list(G.out_edges(node, data=True))
outgoing_nodes = [edge[1] for edge in outgoing_e]
topological_outgoing_nodes = [node for node in topological_order_reversed if node in outgoing_nodes]
outgoing_e_sorted = sorted(outgoing_e, key=lambda x : topological_outgoing_nodes.index(x[1]))
outgoing_set = set()
size_constraint = 0.0 if node != "middle of the room" else (0.0, 0.0)
for edge in outgoing_e_sorted:
if edge[1] in outgoing_set:
continue
edge_obj = get_object_from_scene_graph(edge[1], scene_graph)
if not edge_obj["is_on_the_floor"]:
continue
edge_obj_rot = get_rotation(edge_obj, scene_graph)
cluster_size, e_children = get_cluster_size(edge[1], G, scene_graph, cot_data)
print(f"Cluster size for {edge[1]}: {cluster_size}")
rot_diff = abs(node_obj_rot - edge_obj_rot)
constraint_key = ("length", "width") if rot_diff % 180 == 0 else ("width", "length")
side_to_add = (("left of", "right of"),("in front", "behind")) if constraint_key[0] == "length" else (("in front", "behind"), ("left of", "right of"))
outgoing_set.add(edge[1])
outgoing_set = outgoing_set.union(e_children)
if node == "middle of the room":
x = edge_obj["size_in_meters"][constraint_key[0]] + cluster_size[side_to_add[0][0]] + cluster_size[side_to_add[0][1]]
constraint_x = max(size_constraint[0], x)
y = edge_obj["size_in_meters"][constraint_key[1]] + cluster_size[side_to_add[1][0]] + cluster_size[side_to_add[1][1]]
constraint_y = max(size_constraint[1], y)
size_constraint = (constraint_x, constraint_y)
else:
size_constraint += edge_obj["size_in_meters"][constraint_key[0]] + cluster_size[side_to_add[0][0]] + cluster_size[side_to_add[0][1]]
if verbose:
print(f"Size constraint for {node}: {size_constraint}!")
print(f"Outgoing Set: {outgoing_set}")
print("\n")
if node != "middle of the room":
if node_obj["size_in_meters"]["length"] < size_constraint:
conflict_str = f"The length of the {node} is too small to accommodate all of the following objects on it: "
conflict_str += "\nDelete one of these nodes depending on which one is the least important for the user preference and the room's functionality: "
conflict_str += ", ".join(outgoing_set)
conflict_str += f"\nUser preference: {user_input}"
conflicts.append(conflict_str)
else:
if node_obj["size_in_meters"]["length"] < size_constraint[0]:
conflict_str = f"The length of the {node} is too small to accommodate all of the following objects on it: "
conflict_str += "\nDelete one of these nodes depending on which one is the least important for the user preference and the room's functionality: "
conflict_str += ", ".join(outgoing_set)
conflict_str += f"\nUser preference: {user_input}"
conflicts.append(conflict_str)
if node_obj["size_in_meters"]["width"] < size_constraint[1]:
conflict_str = f"The width of the {node} is too small to accommodate all of the following objects on it: "
conflict_str += "\nDelete one of these nodes depending on which one is the least important for the user preference and the room's functionality: "
conflict_str += ", ".join(outgoing_set)
conflict_str += f"\nUser preference: {user_input}"
conflicts.append(conflict_str)
return conflicts
def get_cluster_objects(scene_graph):
object_ids_by_scene_graph = {}
for obj in scene_graph:
# Don't add thin objects to the cluster
if is_thin_object(obj):
continue
placement = obj.get("placement")
if placement:
edges = placement["objects_in_room"] + placement["room_layout_elements"]
scene_graph_set = frozenset([tuple(sorted(x.items())) for x in edges])
if scene_graph_set in object_ids_by_scene_graph:
object_ids_by_scene_graph[scene_graph_set].append(obj["new_object_id"])
else:
object_ids_by_scene_graph[scene_graph_set] = [obj["new_object_id"]]
# Filter out groups with only one object
object_ids_groups = {k: v for k, v in object_ids_by_scene_graph.items() if len(v) > 1 and len(k) > 0}
return object_ids_groups
def get_object_from_scene_graph(obj_id, scene_graph):
"""
Get the object from the scene graph by its id
"""
return next((x for x in scene_graph if x["new_object_id"] == obj_id), None)
def has_one_parent_and_one_child(tree):
for node in tree.nodes():
if tree.in_degree(node) > 1 or tree.out_degree(node) > 1:
return False
return True
def find_edges_to_flip(tree):
edges_to_flip = []
for node in tree.nodes():
if tree.in_degree(node) > 1 or tree.out_degree(node) > 1:
# If a node has more than one parent or child, find the edges to flip
for parent in list(tree.predecessors(node)):
if tree.in_degree(node) > 1:
edges_to_flip.append((parent, node))
for child in list(tree.successors(node)):
if tree.out_degree(node) > 1:
edges_to_flip.append((node, child))
return edges_to_flip
def flip_edges(tree, root_node, verbose=False):
flipped_edges = {}
while not has_one_parent_and_one_child(tree):
edges_to_flip = find_edges_to_flip(tree)
if verbose:
print("Edges to flip: ", edges_to_flip)
if not edges_to_flip:
break # No more edges to flip
edge_to_flip = edges_to_flip[0]
tree.remove_edge(*edge_to_flip)
tree.add_edge(edge_to_flip[1], edge_to_flip[0])
# After flipping, check if the tree structure is valid
if has_one_parent_and_one_child(tree):
flipped_edges[edge_to_flip] = True
else:
# If the structure is still invalid, undo the flip by removing the flipped edge
tree.remove_edge(edge_to_flip[1], edge_to_flip[0])
tree.add_edge(edge_to_flip[0], edge_to_flip[1])
while len(list(nx.simple_cycles(tree))) > 0:
cycles = list(nx.simple_cycles(tree))
tree.remove_edge(cycles[0][-1], cycles[0][0])
# Populate the dictionary for the remaining edges
for edge in tree.edges():
if edge not in flipped_edges:
flipped_edges[edge] = False
return tree, flipped_edges
def flip_edges_to_binary_tree(graph, root_node, verbose):
tree = nx.DiGraph(graph)
flipped_edges = {}
if verbose:
print("Root Node: ", root_node)
# Ensure that the graph is weakly connected
if not nx.is_weakly_connected(tree):
print("The input graph is not weakly connected.")
return None
# Perform edge flips until a binary tree is obtained
while not is_binary_tree(tree, root_node):
non_tree_edges = find_non_tree_edges(tree, root_node)
if verbose:
print("Non tree edges: ", non_tree_edges)
if not non_tree_edges:
break # No more edges to flip
edge_to_flip = non_tree_edges[0]
tree.remove_edge(*edge_to_flip)
tree.add_edge(edge_to_flip[1], edge_to_flip[0])
if (edge_to_flip[1], edge_to_flip[0]) not in find_non_tree_edges(tree, root_node):
# Update the dictionary to indicate that the edge has been flipped
flipped_edges[edge_to_flip] = True
else:
# If the edge was flipped, but the graph is still not a binary tree, delete the edge
tree.remove_edge(edge_to_flip[1], edge_to_flip[0])
# Populate the dictionary for the remaining edges
for edge in tree.edges():
if edge not in flipped_edges:
flipped_edges[edge] = False
return tree, flipped_edges
def is_binary_tree(tree, root_node):
# Check if the graph is a tree (acyclic and connected)
if not nx.is_tree(tree):
return False
# Check if the in-degree of every node is at most 1 (binary tree condition)
for node in tree.nodes():
in_degree = tree.in_degree(node)
if node != root_node and in_degree > 1:
return False
return True
def remove_edges_with_connectivity(dag, verbose):
# Iteratively remove the edges that have weight 0
edge_to_remove = None
for edge in dag.edges(data=True):
if edge[2]["weight"] == 0:
temp_dag = dag.copy() # Make a copy of the original DAG
temp_dag.remove_edge(edge[0], edge[1]) # Remove the edge
undirected = temp_dag.to_undirected()
if nx.is_connected(undirected):
edge_to_remove = (edge[0], edge[1])
break
if verbose:
print("Edge to remove: ", edge_to_remove)
if edge_to_remove:
dag.remove_edge(*edge_to_remove)
return remove_edges_with_connectivity(dag, verbose)
return dag
def find_non_tree_edges(graph, root_node):
non_tree_edges = []
for edge in graph.edges():
temp_graph = nx.DiGraph(graph)
temp_graph.remove_edge(*edge)
if not nx.is_weakly_connected(temp_graph) or not nx.is_tree(temp_graph) or not nx.has_path(G=temp_graph, source=edge[0], target=root_node):
non_tree_edges.append(edge)
return non_tree_edges
def clean_and_extract_edges(relationships, parent_id, verbose):
# Build the graph
dag = nx.DiGraph()
for obj in relationships["children_objects"]:
if obj["name_id"] != parent_id:
dag.add_node(obj["name_id"])
for obj in relationships["children_objects"]:
if obj["name_id"] != parent_id:
for rel in obj["placement"]["children_objects"]:
if rel["name_id"] != parent_id:
dag.add_edge(obj["name_id"], rel["name_id"], weight=int(rel["is_adjacent"]))
# Find cycles and remove them from the DAG
if verbose:
print("Simple cycles: ", list(nx.simple_cycles(dag)))
while len(list(nx.simple_cycles(dag))) > 0:
cycles = list(nx.simple_cycles(dag))
dag.remove_edge(cycles[0][-1], cycles[0][0])
if verbose:
plt.subplot(121)
pos_original = nx.spring_layout(dag)
nx.draw(dag, pos_original, with_labels=True, font_weight='bold', node_size=700, arrowsize=20)
plt.title("Original Graph")
plt.show()
dag = remove_edges_with_connectivity(dag, verbose)
print("Edges remaining: ", dag.edges(data=True))
# binary_tree, flipped_edges = flip_edges_to_binary_tree(dag, list(dag.nodes())[0], verbose)
binary_tree, flipped_edges = flip_edges(dag, list(dag.nodes())[0], verbose)
if binary_tree and verbose:
# Visualize the original graph and the obtained binary tree
pos_original = nx.spring_layout(dag)
pos_binary_tree = nx.spring_layout(binary_tree)
plt.subplot(121)
nx.draw(dag, pos_original, with_labels=True, font_weight='bold', node_size=700, arrowsize=20)
plt.title("Original Graph")
plt.subplot(122)
nx.draw(binary_tree, pos_binary_tree, with_labels=True, font_weight='bold', node_size=700, arrowsize=20)
plt.title("Binary Tree")
plt.show()
return binary_tree.edges(), flipped_edges
# def create_empty_image_with_boxes(image_size, boxes):
# img = np.zeros((image_size[0], image_size[1], 3), dtype=np.uint8)
# for box in boxes:
# x, y, w, h, r, label = box
# x, y, w, h = int(x * 100), int(y * 100), int(w * 100), int(h * 100)
# if np.isclose(r, 90.0) or np.isclose(r, 270.0):
# x, y = int(x - h/2), int(y - w/2)
# cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2)
# else:
# x, y = int(x - w/2) , int(y - h/2)
# cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# cv2.putText(img, label, (x, y - 10), cv2.FONT_ITALIC , 0.5, (255, 255, 255), 1)
# cv2.imshow("image", img)
# key = cv2.waitKey(0)
def get_visualization(scene_graph, room_priors=None):
visual_scene_graph = [
(
item["position"]["x"] + 2.0,
item["position"]["y"] + 2.0,
item["size_in_meters"]["length"],
item["size_in_meters"]["width"],
item["rotation"]["z_angle"],
item["new_object_id"]
)
for item in scene_graph if "position" in item.keys()
]
# TODO: Adjust visualization window size according to the room size
# create_empty_image_with_boxes((800, 800), visual_scene_graph)
def calculate_overlap(box1, box2):
if box1 is None or box2 is None:
return None
x_min = max(box1[0], box2[0])
x_max = min(box1[1], box2[1])
y_min = max(box1[2], box2[2])
y_max = min(box1[3], box2[3])
z_min = max(box1[4], box2[4])
z_max = min(box1[5], box2[5])
# Check if the boxes overlap with a small tolerance
if x_min <= x_max + 1e-03 and y_min <= y_max + 1e-03 and z_min <= z_max + 1e-03:
return (x_min, x_max, y_min, y_max, z_min, z_max)
else:
return None
def is_collision_3d(obj1, obj2, bbox_instead = False):
pos1, rot1, size1 = copy(obj1['position']), copy(obj1["rotation"]["z_angle"]), copy(obj1['size_in_meters'])
# We won't check for collisions for objects with very thin surfaces
if is_thin_object(obj1):
return False
if not bbox_instead:
pos2, rot2, size2 = copy(obj2['position']), copy(obj2["rotation"]["z_angle"]), copy(obj2['size_in_meters'])
# We won't check for collisions for objects with very thin surfaces
try:
if is_thin_object(obj2):
return False
except:
print(obj2)
raise Exception
else:
pos2, rot2, size2 = {"x" : (obj2[1] + obj2[0]) / 2 , "y" : (obj2[3] + obj2[2]) / 2, "z" : (obj2[5] + obj2[4]) / 2}, 0.0, {"length" : (obj2[1] - obj2[0]), "width" : (obj2[3] - obj2[2]), "height" : (obj2[5] - obj2[4])}
def swap_dimensions_if_rotated(size, rotation):
if np.isclose(rotation, 90.0) or np.isclose(rotation, 270.0):
size["length"], size["width"] = size["width"], size["length"]
def get_bounds(pos, size):
x_max = pos['x'] + size['length'] / 2
x_min = pos['x'] - size['length'] / 2
y_max = pos['y'] + size['width'] / 2
y_min = pos['y'] - size['width'] / 2
z_max = pos['z'] + size['height'] / 2
z_min = pos['z'] - size['height'] / 2
return x_max, x_min, y_max, y_min, z_max, z_min
def check_overlap(min1, max1, min2, max2):
return min1 < max2 and max1 > min2 and abs(min1 - max2) > 1e-3 and abs(max1 - min2) > 1e-3
# Swap dimensions if needed
swap_dimensions_if_rotated(size1, rot1)
swap_dimensions_if_rotated(size2, rot2)
# Get bounds for both objects
obj1_bounds = get_bounds(pos1, size1)
obj2_bounds = get_bounds(pos2, size2)
# Unpack bounds
(obj1_x_max, obj1_x_min, obj1_y_max, obj1_y_min, obj1_z_max, obj1_z_min) = obj1_bounds
(obj2_x_max, obj2_x_min, obj2_y_max, obj2_y_min, obj2_z_max, obj2_z_min) = obj2_bounds
# Check for overlap in each dimension
x_check = check_overlap(obj1_x_min, obj1_x_max, obj2_x_min, obj2_x_max)
y_check = check_overlap(obj1_y_min, obj1_y_max, obj2_y_min, obj2_y_max)
z_check = check_overlap(obj1_z_min, obj1_z_max, obj2_z_min, obj2_z_max)
return x_check and y_check and z_check
def get_depth(scene_graph):
G = nx.DiGraph()
# Create graph
for obj in scene_graph:
if obj["new_object_id"] not in G.nodes():
G.add_node(obj["new_object_id"])
obj_scene_graph = obj["placement"]
for constraint in obj_scene_graph["room_layout_elements"]:
if constraint["layout_element_id"] not in G.nodes():
G.add_node(constraint["layout_element_id"])
G.add_edge(constraint["layout_element_id"], obj["new_object_id"])
for constraint in obj_scene_graph["objects_in_room"]:
if constraint["object_id"] not in G.nodes():
G.add_node(constraint["object_id"])
G.add_edge(constraint["object_id"], obj["new_object_id"])
# DFS Algo
visited = set()
prior_ids = ["south_wall", "north_wall", "east_wall", "west_wall", "middle of the room", "ceiling"]
start_nodes = [node for node in G.nodes() if node in prior_ids]
all_nodes_depth = {}
def dfs(node, depth):
visited.add(node)
all_nodes_depth[node] = depth
for successor in G.successors(node):
if successor not in visited:
dfs(successor, depth + 1)
elif successor in all_nodes_depth and all_nodes_depth[successor] < depth + 1:
# Skip already visited nodes with smaller depth to break out of cycles
continue
else:
all_nodes_depth[successor] = depth + 1
for start_node in start_nodes:
dfs(start_node, 0)
all_nodes_depth = {k: v for k, v in all_nodes_depth.items() if k not in prior_ids}
return all_nodes_depth
def get_possible_positions(object_id, scene_graph, room_dimensions, cot_data):
obj = [element for element in scene_graph if element.get("new_object_id") == object_id][0]
obj_scene_graph = obj["placement"]
rot = get_rotation(obj, scene_graph)
obj["rotation"] = {"z_angle" : rot}
func_map = {
"on" : get_on_constraint,
"under" : get_under_contraint,
"left of" : get_left_of_constraint,
"right of" : get_right_of_constraint,
"in front" : get_in_front_constraint,
"behind" : get_behind_constraint,
"above" : get_above_constraint,
"in the corner" : get_in_corner_constraint,
"in the middle of" : get_on_constraint
}
constraints = obj_scene_graph["room_layout_elements"] + obj_scene_graph["objects_in_room"]
possible_positions = []
constraints_name = [x["layout_element_id"] for x in obj_scene_graph["room_layout_elements"]] + [x["object_id"] for x in obj_scene_graph["objects_in_room"]]
cot_data.append(f"Calculate the possible positions of {object_id} with constraints: {constraints_name}.")
for idx, constraint in enumerate(constraints):
prep = constraint["preposition"]
adjacency = constraint["is_adjacent"] if "is_adjacent" in constraint.keys() else True
is_on_floor = obj["is_on_the_floor"]
obj_A = obj
key = "layout_element_id" if "layout_element_id" in constraint.keys() else "object_id"
obj_B = [element for element in scene_graph if element.get("new_object_id") == constraint[key]][0]
if "position" in obj_B.keys():
cot_data.append(f"{object_id} is <{prep}> the <{idx + 1}> constraint {obj_B['new_object_id']}.")
cache = func_map[prep](obj_A, obj_B, adjacency, is_on_floor, room_dimensions, cot_data)
possible_positions.append(cache)
cot_data.append(f"The possible position of {object_id} from constraint {obj_B['new_object_id']} is {cache}.")
cot_data.append(f"All possible placement positions of {object_id}: {possible_positions}.")
return possible_positions
def get_topological_ordering(scene_graph):
G = nx.DiGraph()
# Create graph
for obj in scene_graph:
if "placement" in obj.keys():
if obj["new_object_id"] not in G.nodes():
G.add_node(obj["new_object_id"])
obj_scene_graph = obj["placement"]
for constraint in obj_scene_graph["room_layout_elements"]:
if constraint["layout_element_id"] not in G.nodes():
G.add_node(constraint["layout_element_id"])
G.add_edge(constraint["layout_element_id"], obj["new_object_id"])
for constraint in obj_scene_graph["objects_in_room"]:
if constraint["object_id"] not in G.nodes():
G.add_node(constraint["object_id"])
G.add_edge(constraint["object_id"], obj["new_object_id"])
# Topological ordering
return list(nx.topological_sort(G))
def get_no_overlap_reason(obj, positions, cluster_constraint=None, errors={}):
overlaps = []
candidate_positions = positions
scene_graph_edges = obj["placement"]["room_layout_elements"] + obj["placement"]["objects_in_room"]
if cluster_constraint is not None:
candidate_positions = candidate_positions + [cluster_constraint]
scene_graph_edges = scene_graph_edges + ["cluster"]
for i, pos1 in enumerate(candidate_positions):
for j, pos2 in enumerate(candidate_positions[i+1:]):
if pos1 == pos2:
continue
overlap = calculate_overlap(pos1, pos2)
if overlap is None:
overlaps.append((i, i + 1 + j))
for i, j in overlaps:
print("No Overlap between: ", i, " ", j)
print("Object: ", obj["new_object_id"])
if scene_graph_edges[i] == "cluster":
key_j = "layout_element_id" if "layout_element_id" in scene_graph_edges[j].keys() else "object_id"
key = ("no_overlap", obj["new_object_id"], scene_graph_edges[j][key_j], scene_graph_edges[j]["preposition"], "cluster")
errors[key] = 1 + errors.get(key, 0)
elif scene_graph_edges[j] == "cluster":
key_i = "layout_element_id" if "layout_element_id" in scene_graph_edges[i].keys() else "object_id"
key = ("no_overlap", obj["new_object_id"], scene_graph_edges[i][key_i], scene_graph_edges[i]["preposition"], "cluster")
errors[key] = 1 + errors.get(key, 0)
else:
key_i = "layout_element_id" if "layout_element_id" in scene_graph_edges[i].keys() else "object_id"
key_j = "layout_element_id" if "layout_element_id" in scene_graph_edges[j].keys() else "object_id"
key = ("no_overlap", obj["new_object_id"], scene_graph_edges[i][key_i], scene_graph_edges[i]["preposition"], scene_graph_edges[j][key_j], scene_graph_edges[j]["preposition"])
errors[key] = 1 + errors.get(key, 0)
return errors
def place_object(obj, scene_graph, room_dimensions, cot_data, errors={}, debug=False):
# if verbose:
# get_visualization(scene_graph)
if not any(d.get("new_object_id") == obj["new_object_id"] for d in scene_graph):
cot_data.append(f"The object {obj['new_object_id']} is not in the scene graph and cannot be placed.")
return errors
positions = get_possible_positions(obj["new_object_id"], scene_graph, room_dimensions, cot_data)
print(f"Object: {obj['new_object_id']}")
print("Possible positions: ", positions)
abs_length, abs_width = deepcopy(obj["size_in_meters"]["length"]), deepcopy(obj["size_in_meters"]["width"])
x_neg, x_pos, y_neg, y_pos = obj["cluster"]["constraint_area"]["x_neg"], obj["cluster"]["constraint_area"]["x_pos"], obj["cluster"]["constraint_area"]["y_neg"], obj["cluster"]["constraint_area"]["y_pos"]
raw_constraint = (
x_neg + abs_length / 2,
y_pos + abs_width / 2,
x_pos + abs_length / 2,
y_neg + abs_width / 2,
)
cot_data.append(f"For {obj['new_object_id']} with length {abs_length} and width {abs_width}, the minimum and maximum boundaries in the x-axis are {x_neg} and {x_pos}, the minimum and maximum boundaries in the y-axis are {y_neg} and {y_pos}.")
cot_data.append(f"Calculate the raw constraint area, ensuring the object {obj['new_object_id']}'s center lies within it. Left boundary: {x_neg} + {abs_length} / 2 = {raw_constraint[0]}. Top boundary: {y_pos} + {abs_width} / 2 = {raw_constraint[1]}. Right boundary: {x_pos} + {abs_length} / 2 = {raw_constraint[2]}. Bottom boundary: {y_neg} + {abs_width} / 2 = {raw_constraint[3]}.")
shift = int(obj["rotation"]["z_angle"] // 90)
raw_constraint = raw_constraint[-shift:] + raw_constraint[:-shift]
cot_data.append(f"Calculate the number of quadrants the object {obj['new_object_id']} has rotated: {obj['rotation']['z_angle']} / 90 = {shift}. Adjust the raw constraint area by rotating the boundary order clockwise by {shift} quadrants.")
cluster_constraint = (
raw_constraint[0],
room_dimensions[0] - raw_constraint[2],
raw_constraint[3],
room_dimensions[1] - raw_constraint[1],
0.0,
room_dimensions[2]
)
cot_data.append(f"Convert adjusted raw constraint to cluster constraint representing legal placement region for {obj['new_object_id']}. Cluster constraint: xmin = {raw_constraint[0]}, xmax = {room_dimensions[0]} - {raw_constraint[2]} = {cluster_constraint[1]}, ymin = {raw_constraint[3]}, ymax = {room_dimensions[1]} - {raw_constraint[1]} = {cluster_constraint[3]}, zmin = 0.0, zmax = {room_dimensions[2]}.")
if debug:
print("Cluster constraint: ", cluster_constraint)
if len(positions) == 0:
# Create the error
key = ("no_positions_found", obj["new_object_id"])
errors[key] = 1 + errors.get(key, 0)
cot_data.append(f"No positions found for {obj['new_object_id']}.")
return errors
children = [element for element in scene_graph if "placement" in element.keys() and obj.get("new_object_id") in [x["object_id"] for x in element["placement"]["objects_in_room"]]]
topological_sorted = get_topological_ordering(scene_graph)
# Check condition to skip placing object
if "position" in obj.keys():
current_collisions = 0
for obj_B in scene_graph:
if obj_B == obj or "position" not in obj_B.keys():
continue
if is_collision_3d(obj, obj_B):
current_collisions += 1
cot_data.append(f"{obj['new_object_id']} collides with {obj_B['new_object_id']}.")
overlap = calculate_overlap(cluster_constraint, positions[0])
for pos in positions[1:]:
overlap = calculate_overlap(overlap, pos)
check_preposition = is_collision_3d(obj, overlap, bbox_instead=True) if overlap is not None else False
check_children = any([is_collision_3d(child, item) for child in children if "position" in child.keys() for item in scene_graph if item["new_object_id"] != child["new_object_id"] and "position" in item.keys()])
if current_collisions == 0 and check_preposition and (not check_children or len(children) == 0):
if debug:
print("Object already placed: ", obj["new_object_id"])
print("Preposition: ", check_preposition)
cot_data.append(f"{obj['new_object_id']} is already placed. No collision, no overlaps with possible placement positions, no collision for child objects or no child objects. Skip the placement.")
return errors
else:
cot_data.append(f"Errors for {obj['new_object_id']}. Reposition.")
else:
cot_data.append(f"{obj['new_object_id']} is not placed. Place {obj['new_object_id']}.")
# Place object
if len(positions) == 1:
overlap = calculate_overlap(cluster_constraint, positions[0])
cot_data.append(f"One possible position for {obj['new_object_id']}, calculate overlap between cluster constraint and that position to be {overlap}.")
else:
overlap = calculate_overlap(cluster_constraint, positions[0])
for pos in positions[1:]:
overlap = calculate_overlap(overlap, pos)
cot_data.append(f"{len(positions)} possible positions for {obj['new_object_id']}, iteratively calculate overlap between current overlap and each position to be {overlap}.")
# Find what causes the no overlap
if overlap is None:
if debug:
print("No overlap found for object: ", obj["new_object_id"])
errors = get_no_overlap_reason(obj, positions, cluster_constraint, errors)
cot_data.append(f"Overlap is empty. No suitable position for {obj['new_object_id']}.")
return errors
else:
cot_data.append(f"Overlap is {overlap} and not empty. Suitable position for {obj['new_object_id']} is found.")
counter = 0
while True:
counter += 1
if counter > 20:
if debug:
print("No positions found for object: ", obj["new_object_id"])
print(overlap)
del obj["position"]
# If there wasn't any errors, it means that the object was colliding with other objects
if not errors:
key = ("no_positions_found", obj["new_object_id"])
errors[key] = 1 + errors.get(key, 0)
# Updated: Just delete the object
# print("OBJECT DELETED!!")
# scene_graph.remove(obj)
cot_data.append(f"No positions found for object: {obj['new_object_id']}. The placement of {obj['new_object_id']} failed.")
return errors
if is_point_bbox(overlap):
counter = 50
cot_data.append(f"Overlap {overlap} is a point, not an area.")
x = random.uniform(overlap[0], overlap[1])
y = random.uniform(overlap[2], overlap[3])
z = random.uniform(overlap[4], overlap[5])
obj["position"] = {
"x" : x,
"y" : y,
"z" : z
}
cot_data.append(f"Select a placement position {obj['position']} within the overlap for {obj['new_object_id']}.")
if debug:
print("Assigned position: ", obj["position"], " to object: ", obj["new_object_id"])
flag = False
for obj_B in scene_graph:
if obj_B == obj or "position" not in obj_B.keys():
continue
if is_collision_3d(obj, obj_B):
flag = True
cot_data.append(f"{obj['new_object_id']} collides with {obj_B['new_object_id']} and cannot be placed.")
break
if flag:
continue
else:
cot_data.append(f"{obj['new_object_id']} does not collide with other objects.")
child_flag = False
# Topologically sort children
children = [x for topo in topological_sorted for x in children if topo == x["new_object_id"]]
# print("Sorted children: ", [x["new_object_id"] for x in children])
if len(children) != 0:
cot_data.append(f"Place the child objects of {obj['new_object_id']}: {[child['new_object_id'] for child in children]}.")
for idx, child in enumerate(children):
cot_data.append(f"Place the <{idx + 1}> child object {child['new_object_id']} of {obj['new_object_id']}.")
if debug:
print(obj["new_object_id"], " placing child: ", child["new_object_id"])
errors_child = place_object(child, scene_graph, room_dimensions, cot_data, errors={})
if debug:
print("Errors child: ", errors_child)
if errors_child:
child_flag = True
# Add the errors to the main errors
for key in errors_child.keys():
if key in errors.keys():
errors[key] += errors_child[key]
else:
errors[key] = errors_child[key]
cot_data.append(f"The placement of the <{idx + 1}> child object {child['new_object_id']} of {obj['new_object_id']} failed. Errors: {errors_child}.")
break
if debug:
print("Child flag: ", child_flag, " for object: ", obj["new_object_id"])
if child_flag:
# Delete the position key in children
for child in children:
if "position" in child.keys():
del child["position"]
cot_data.append(f"Delete the position of {obj['new_object_id']}'s child objects and reposition {obj['new_object_id']}.")
continue
else:
cot_data.append(f"The placement of the child objects of {obj['new_object_id']} is successful.")
else:
cot_data.append(f"{obj['new_object_id']} has no child object. Skip the placement of the child objects.")
if debug:
print("Object placed: ", obj["new_object_id"])
errors = {}
cot_data.append(f"Object placed: {obj['new_object_id']}.")
break
return errors
|