{%- if extract_chat_memory %} {{- '<|im_start|>user\nYou are a memory extraction expert.\n\nYour task is to extract memories from the perspective of user, based on a conversation between user and assistant. This means identifying what user would plausibly remember — including their own experiences, thoughts, plans, or relevant statements and actions made by others (such as assistant) that impacted or were acknowledged by user.\n\nPlease perform:\n1. Identify information that reflects user\'s experiences, beliefs, concerns, decisions, plans, or reactions — including meaningful input from assistant that user acknowledged or responded to.\n2. Resolve all time, person, and event references clearly:\n - Convert relative time expressions (e.g., “yesterday,” “next Friday”) into absolute dates using the message timestamp if possible.\n - Clearly distinguish between event time and message time.\n - If uncertainty exists, state it explicitly (e.g., “around June 2025,” “exact date unclear”).\n - Include specific locations if mentioned.\n - Resolve all pronouns, aliases, and ambiguous references into full names or identities.\n - Disambiguate people with the same name if applicable.\n3. Always write from a third-person perspective, referring to user as\n"The user" or by name if name mentioned, rather than using first-person ("I", "me", "my").\nFor example, write "The user felt exhausted..." instead of "I felt exhausted...".\n4. Do not omit any information that user is likely to remember.\n - Include all key experiences, thoughts, emotional responses, and plans — even if they seem minor.\n - Prioritize completeness and fidelity over conciseness.\n - Do not generalize or skip details that could be personally meaningful to user.\n\nReturn a single valid JSON object with the following structure:\n\n{\n "memory list": [\n {\n "key": ,\n "memory_type": ,\n "value": ,\n "tags": \n },\n ...\n ],\n "summary": \n}\n\nLanguage rules:\n- The `key`, `value`, `tags`, `summary` fields must match the language of the input conversation.\n- Keep `memory_type` in English.\n\nConversation:\n' }} {%- for message in messages %} {%- if message.role == 'user' %} {%- if 'chat_time' in message %} {{- 'user: [' + message.chat_time + ']: ' + message.content + '\n' }} {%- else %} {{- 'user: ' + message.content + '\n' }} {%- endif %} {%- elif message.role == 'assistant' %} {%- if 'chat_time' in message %} {{- 'assistant: [' + message.chat_time + ']: ' + message.content + '\n' }} {%- else %} {{- 'assistant: ' + message.content + '\n'}} {%- endif %} {%- endif %} {%- endfor %} {{- '\n\nYour Output:' }} {%- elif extract_doc_memory %} {{- '<|im_start|>\nYou are an expert text analyst for a search and retrieval system. Your task is to process a document chunk and generate a single, structured JSON object.\nThe input is a single piece of text: `[DOCUMENT_CHUNK]`.\nYou must generate a single JSON object with two top-level keys: `summary` and `tags`.\n1. `summary`:\n - A dense, searchable summary of the ENTIRE `[DOCUMENT_CHUNK]`.\n - The purpose is for semantic search embedding.\n - A clear and accurate sentence that comprehensively summarizes the main points, arguments, and information within the `[DOCUMENT_CHUNK]`.\n - The goal is to create a standalone overview that allows a reader to fully understand the essence of the chunk without reading the original text.\n - The summary should be **no more than 50 words**.\n2. `tags`:\n - A concise list of **3 to 5 high-level, summative tags**.\n - **Each tag itself should be a short phrase, ideally 2 to 4 words long.**\n - These tags must represent the core abstract themes of the text, suitable for broad categorization.\n - **Crucially, prioritize abstract concepts** over specific entities or phrases mentioned in the text. For example, prefer "Supply Chain Resilience" over "Reshoring Strategies".\n\nHere is the document chunk to process:\n`[DOCUMENT_CHUNK]`\n' }} {{- messages}} {{- '\n\nProduce ONLY the JSON object as your response.\n' }} {%- else %} {%- if tools %} {{- '<|im_start|>system\n' }} {%- if messages[0].role == 'system' %} {{- messages[0].content + '\n\n' }} {%- endif %} {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within XML tags:\n" }} {%- for tool in tools %} {{- "\n" }} {{- tool | tojson }} {%- endfor %} {{- "\n\n\nFor each function call, return a json object with function name and arguments within XML tags:\n\n{\"name\": , \"arguments\": }\n<|im_end|>\n" }} {%- else %} {%- if messages[0].role == 'system' %} {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }} {%- endif %} {%- endif %} {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %} {%- for message in messages[::-1] %} {%- set index = (messages|length - 1) - loop.index0 %} {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('') and message.content.endswith('')) %} {%- set ns.multi_step_tool = false %} {%- set ns.last_query_index = index %} {%- endif %} {%- endfor %} {%- for message in messages %} {%- if message.content is string %} {%- set content = message.content %} {%- else %} {%- set content = '' %} {%- endif %} {%- if (message.role == "user") or (message.role == "system" and not loop.first) %} {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }} {%- elif message.role == "assistant" %} {%- set reasoning_content = '' %} {%- if message.reasoning_content is string %} {%- set reasoning_content = message.reasoning_content %} {%- else %} {%- if '' in content %} {%- set reasoning_content = content.split('')[0].rstrip('\n').split('')[-1].lstrip('\n') %} {%- set content = content.split('')[-1].lstrip('\n') %} {%- endif %} {%- endif %} {%- if loop.index0 > ns.last_query_index %} {%- if loop.last or (not loop.last and reasoning_content) %} {{- '<|im_start|>' + message.role + '\n\n' + reasoning_content.strip('\n') + '\n\n\n' + content.lstrip('\n') }} {%- else %} {{- '<|im_start|>' + message.role + '\n' + content }} {%- endif %} {%- else %} {{- '<|im_start|>' + message.role + '\n' + content }} {%- endif %} {%- if message.tool_calls %} {%- for tool_call in message.tool_calls %} {%- if (loop.first and content) or (not loop.first) %} {{- '\n' }} {%- endif %} {%- if tool_call.function %} {%- set tool_call = tool_call.function %} {%- endif %} {{- '\n{"name": "' }} {{- tool_call.name }} {{- '", "arguments": ' }} {%- if tool_call.arguments is string %} {{- tool_call.arguments }} {%- else %} {{- tool_call.arguments | tojson }} {%- endif %} {{- '}\n' }} {%- endfor %} {%- endif %} {{- '<|im_end|>\n' }} {%- elif message.role == "tool" %} {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %} {{- '<|im_start|>user' }} {%- endif %} {{- '\n\n' }} {{- content }} {{- '\n' }} {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %} {{- '<|im_end|>\n' }} {%- endif %} {%- endif %} {%- endfor %} {%- endif %} {%- if add_generation_prompt %} {{- '<|im_start|>assistant\n' }} {%- if enable_thinking is defined and enable_thinking is false %} {{- '\n\n\n\n' }} {%- endif %} {%- endif %}