openlem2-retrieval-qa / openlem-finetuning.py
OpenLab-NLP's picture
Upload openlem-finetuning.py
f96b690 verified
# ์ „์ฒด ์‹คํ–‰ ์Šคํฌ๋ฆฝํŠธ โ€” projection-only ํŠœ๋‹ (๋ช…์‹œ์  head ๋ณ€์ˆ˜ ์‚ฌ์šฉ)
import os, json, requests, numpy as np, tensorflow as tf
from tensorflow.keras import layers, Model
import sentencepiece as spm
from tqdm import tqdm
# ========== ์„ค์ • ==========
TOKENIZER_PATH = "bpe.model"
DATA_PATH = "dataset_shuffled.jsonl"
MODEL_PATH = "encoder_fit.weights.h5"
MAX_LEN = 384
EMBED_DIM = 512
LATENT_DIM = 512
BATCH_SIZE = 768
EPOCHS = 1
SHUFFLE_BUFFER = 200000
LEARNING_RATE = 5e-4
TEMPERATURE = 0.05
SEED = 42
np.random.seed(SEED)
tf.random.set_seed(SEED)
tf.get_logger().setLevel("ERROR")
# ========== TPU / ๋ถ„์‚ฐ ์ „๋žต ==========
try:
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="local")
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.TPUStrategy(resolver)
ON_TPU = True
print("โœ… TPU ์ดˆ๊ธฐํ™” ์™„๋ฃŒ")
except Exception as e:
strategy = tf.distribute.get_strategy()
ON_TPU = False
print("โš ๏ธ TPU ๋ฏธ์‚ฌ์šฉ, GPU/CPU ์ง„ํ–‰:", e)
from tensorflow.keras import mixed_precision
policy = mixed_precision.Policy("mixed_bfloat16" if ON_TPU else "float32")
mixed_precision.set_global_policy(policy)
print("Mixed precision policy:", policy)
# ========== Tokenizer ==========
sp = spm.SentencePieceProcessor()
sp.load(TOKENIZER_PATH)
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1:
pad_id = 0
vocab_size = sp.get_piece_size()
print("vocab_size:", vocab_size, "pad_id:", pad_id)
def encode_sentence_np(s: str, max_len=MAX_LEN):
ids = sp.encode(s, out_type=int)[:max_len]
if len(ids) < max_len:
ids = ids + [pad_id] * (max_len - len(ids))
return np.array(ids, dtype=np.int32)
# ========== ๋ชจ๋ธ ์ •์˜ (์›๋ณธ ๊ตฌ์กฐ ์œ ์ง€) ==========
class DynamicConv(layers.Layer):
def __init__(self, d_model, k=7):
super().__init__()
assert k % 2 == 1
self.k = k
self.dense = layers.Dense(d_model, activation='silu')
self.proj = layers.Dense(d_model)
self.generator = layers.Dense(k, dtype='float32')
def call(self, x):
x_in = x
x = tf.cast(x, tf.float32)
B = tf.shape(x)[0]; L = tf.shape(x)[1]; D = tf.shape(x)[2]
kernels = self.generator(self.dense(x))
kernels = tf.nn.softmax(kernels, axis=-1)
pad = (self.k - 1) // 2
x_pad = tf.pad(x, [[0,0],[pad,pad],[0,0]])
x_pad_4d = tf.expand_dims(x_pad, axis=1)
patches = tf.image.extract_patches(images=x_pad_4d,
sizes=[1,1,self.k,1],
strides=[1,1,1,1],
rates=[1,1,1,1],
padding='VALID')
patches = tf.reshape(patches, [B, L, self.k, D])
out = tf.reduce_sum(patches * tf.expand_dims(kernels, -1), axis=2)
out = self.proj(out)
return tf.cast(out, x_in.dtype)
class EncoderBlock(layers.Layer):
def __init__(self, embed_dim=EMBED_DIM, ff_dim=1152, num_conv_layers=2):
super().__init__()
self.fc1 = layers.Dense(ff_dim)
self.fc2 = layers.Dense(embed_dim)
self.blocks = [DynamicConv(d_model=embed_dim, k=7) for _ in range(num_conv_layers)]
self.ln = layers.LayerNormalization(epsilon=1e-5)
self.ln1 = layers.LayerNormalization(epsilon=1e-5)
self.ln2 = layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=None):
x_norm = self.ln(x)
out = x_norm
for block in self.blocks:
out = block(out)
x = x_norm + self.ln1(out)
v = out
h = self.fc1(v)
g, v_split = tf.split(h, 2, axis=-1)
h = tf.nn.silu(g) * v_split
h = self.fc2(h)
x = x + self.ln2(h)
return x
class L2NormLayer(layers.Layer):
def __init__(self, axis=1, epsilon=1e-10):
super().__init__()
self.axis = axis
self.epsilon = epsilon
def call(self, inputs):
return tf.math.l2_normalize(inputs, axis=self.axis, epsilon=self.epsilon)
class SentenceEncoder(Model):
def __init__(self, vocab_size, embed_dim=EMBED_DIM, latent_dim=LATENT_DIM, max_len=MAX_LEN, pad_id=pad_id, dropout_rate=0.1):
super().__init__()
self.pad_id = pad_id
self.embed = layers.Embedding(vocab_size, embed_dim)
self.pos_embed = layers.Embedding(input_dim=max_len, output_dim=embed_dim)
self.dropout = layers.Dropout(dropout_rate)
self.blocks = [EncoderBlock() for _ in range(2)]
self.attn_pool = layers.Dense(1)
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
self.latent = layers.Dense(latent_dim)
self.l2norm = L2NormLayer(axis=1)
def call(self, x, training=None):
positions = tf.range(tf.shape(x)[1])[tf.newaxis, :]
x_embed = self.embed(x) + self.pos_embed(positions)
x_embed = self.dropout(x_embed, training=training)
mask = tf.cast(tf.not_equal(x, self.pad_id), tf.float32)
h = x_embed
for block in self.blocks:
h = block(h, training=training)
h = self.ln_f(h)
scores = self.attn_pool(h)
scores = tf.cast(scores, tf.float32)
scores = tf.where(mask[..., tf.newaxis] == 0, tf.constant(-1e9, tf.float32), scores)
scores = tf.nn.softmax(scores, axis=1)
pooled = tf.reduce_sum(h * scores, axis=1)
latent = self.latent(pooled)
latent = self.l2norm(latent)
return tf.cast(latent, tf.float32)
# ========== ๋ชจ๋ธ ์ƒ์„ฑยทbuildยท๊ฐ€์ค‘์น˜ ๋กœ๋“œ ๋ฐ head ๋ณ€์ˆ˜ ๋ช…์‹œ์  ์ˆ˜์ง‘ ==========
with strategy.scope():
encoder = SentenceEncoder(vocab_size=vocab_size)
# 1) build (ํ•„์ˆ˜)
encoder(np.zeros((1, MAX_LEN), dtype=np.int32))
# 2) load weights if exist
if os.path.exists(MODEL_PATH):
try:
encoder.load_weights(MODEL_PATH)
print("Loaded weights from", MODEL_PATH)
except Exception as e:
print("Warning: load_weights failed:", e)
# 3) freeze ์ „์ฒด(ํŽธํ•˜๊ฒŒ)
encoder.trainable = False
# 4) ensure head layers exist and set them trainable (layer-level)
head_layers = []
for name in ("attn_pool", "ln_f", "latent"):
layer = getattr(encoder, name, None)
if layer is None:
print(f"Warning: encoder has no attribute '{name}'")
else:
layer.trainable = True
head_layers.append(layer)
# 5) call once more to ensure any lazy variable creation runs
encoder(np.zeros((1, MAX_LEN), dtype=np.int32))
# 6) collect trainable variables explicitly from head_layers
trainable_vars = []
for layer in head_layers:
# layer.trainable_weights gives variables of that layer which are trainable
for v in layer.trainable_weights:
trainable_vars.append(v)
# safety: if still empty, dump info and raise
if len(trainable_vars) == 0:
print("ERROR: no head trainable vars found. Dumping all variables:")
for v in encoder.variables:
print(v.name, "shape", v.shape, "trainable:", v.trainable)
raise RuntimeError("No trainable head variables found - aborting.")
total_trainable = sum(int(np.prod(v.shape)) for v in trainable_vars)
print("Collected head layers:", [l.name for l in head_layers])
print("Trainable var count (head):", len(trainable_vars), "params:", total_trainable)
# 7) optimizer must be created in scope
optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE)
# ========== tf.data parsing ==========
AUTOTUNE = tf.data.AUTOTUNE
def _py_encode_line(line):
raw = line.numpy()
if isinstance(raw, bytes):
s = raw.decode("utf-8")
else:
s = str(raw)
j = json.loads(s)
q = encode_sentence_np(j.get("query",""))
d = encode_sentence_np(j.get("document",""))
n = encode_sentence_np(j.get("hard_negative",""))
return q, d, n
def parse_line(line):
q,d,n = tf.py_function(_py_encode_line, [line], [tf.int32, tf.int32, tf.int32])
q.set_shape([MAX_LEN]); d.set_shape([MAX_LEN]); n.set_shape([MAX_LEN])
return q,d,n
ds = tf.data.TextLineDataset(DATA_PATH)
ds = ds.map(lambda x: tf.strings.strip(x), num_parallel_calls=AUTOTUNE)
ds = ds.filter(lambda x: tf.not_equal(x, ""))
ds = ds.map(parse_line, num_parallel_calls=AUTOTUNE)
ds = ds.shuffle(SHUFFLE_BUFFER, seed=SEED)
ds = ds.repeat()
ds = ds.batch(BATCH_SIZE, drop_remainder=True)
ds = ds.prefetch(AUTOTUNE)
# sample check
try:
sample = next(iter(ds.take(1)))
print("Sample batch shapes:", [t.shape for t in sample])
except Exception as e:
print("Warning: sample extraction failed:", e)
# ========== loss function ==========
@tf.function
def compute_loss_and_logits(q_emb, p_emb, n_emb, temperature):
docs = tf.concat([p_emb, n_emb], axis=0) # (2B, D)
logits = tf.matmul(q_emb, docs, transpose_b=True) # (B, 2B)
logits = logits / tf.cast(temperature, logits.dtype)
labels = tf.range(tf.shape(q_emb)[0], dtype=tf.int32)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits)
return tf.reduce_mean(loss), logits
# ========== train step (explicit trainable_vars) ==========
@tf.function
def train_step(q_batch, p_batch, n_batch):
def step_fn(q, p, n):
with tf.GradientTape() as tape:
q_emb = encoder(q, training=True)
p_emb = encoder(p, training=True)
n_emb = encoder(n, training=True)
loss, _ = compute_loss_and_logits(q_emb, p_emb, n_emb, TEMPERATURE)
reg_loss = tf.add_n(encoder.losses) if encoder.losses else 0.0
total_loss = loss + reg_loss
grads = tape.gradient(total_loss, trainable_vars)
# replace None grads with zeros (safe)
grads = [tf.zeros_like(v) if g is None else g for g, v in zip(grads, trainable_vars)]
optimizer.apply_gradients(zip(grads, trainable_vars))
return total_loss
per_replica_loss = strategy.run(step_fn, args=(q_batch, p_batch, n_batch))
return strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_loss, axis=None)
# ========== training loop ==========
with open(DATA_PATH, "r", encoding="utf-8") as f:
num_lines = sum(1 for _ in f)
steps_per_epoch = max(1, num_lines // BATCH_SIZE)
print("num_lines:", num_lines, "steps_per_epoch:", steps_per_epoch)
it = iter(ds)
global_step = 0
for epoch in range(EPOCHS):
print(f"\nEpoch {epoch+1}/{EPOCHS}")
pbar = tqdm(range(steps_per_epoch), desc="training", ncols=120)
for step in pbar:
batch = next(it)
loss = train_step(batch[0], batch[1], batch[2])
global_step += 1
pbar.set_postfix({"loss": f"{float(loss.numpy()):.4f}"})
encoder.save_weights(MODEL_PATH)
print("Saved weights:", MODEL_PATH)
print("Training finished.")