File size: 3,080 Bytes
a3128b2 16d8e6f a3128b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: mit
language:
- en
library_name: chaossim
tags:
- chaos-theory
- mathematics
- simulation
- game-theory
- fibonacci
- bernoulli
- nash-equilibrium
- dynamical-systems
---
# ChaosSim
A sophisticated chaos simulation software utilizing the Wolfram Programming Language to model randomized chaotic systems through mathematical principles.
## Overview
ChaosSim combines Bernoulli numbers, Fibonacci sequences, and game-sum theory (Nash equilibrium) to simulate and visualize complex chaotic patterns and behaviors in mathematical systems.
## Features
- **Bernoulli Number Integration**: Leverage Bernoulli numbers for probabilistic chaos modeling
- **Fibonacci-Based Patterns**: Generate chaotic sequences based on Fibonacci number properties
- **Nash Equilibrium Analysis**: Apply game theory principles to simulate equilibrium states in chaotic systems
- **Advanced Visualizations**: Create stunning visual representations of chaotic patterns
- **Customizable Parameters**: Adjust simulation parameters for different chaos scenarios
## Requirements
- Wolfram Mathematica (version 12.0 or higher recommended)
- Wolfram Engine or Wolfram Desktop
## Project Structure
```
ChaosSim/
βββ README.md # Project documentation
βββ ChaosSim.nb # Main simulation notebook
βββ MathUtils.wl # Mathematical utility functions
βββ Visualizations.nb # Visualization examples
βββ Examples.nb # Sample simulations
```
## Getting Started
1. Open `ChaosSim.nb` in Wolfram Mathematica
2. Evaluate all cells to initialize the simulation environment
3. Explore different chaos scenarios by adjusting parameters
4. Check `Examples.nb` for pre-built simulation demonstrations
## Usage
### Basic Chaos Simulation
```mathematica
(* Generate Bernoulli-based chaos *)
bernoullliChaos = SimulateBernoulliChaos[iterations, complexity]
(* Create Fibonacci pattern *)
fibonacciPattern = GenerateFibonacciChaos[depth, variance]
(* Analyze Nash equilibrium *)
nashState = AnalyzeNashEquilibrium[payoffMatrix, players]
```
## Mathematical Foundation
### Bernoulli Numbers
Used for generating probabilistic distributions in chaos modeling, providing smooth transitions between chaotic states.
### Fibonacci Sequences
Creates self-similar patterns and golden ratio-based chaos structures, fundamental to natural chaotic systems.
### Nash Equilibrium
Models strategic interactions in multi-agent chaotic systems, determining stable states in game-theoretic scenarios.
## Examples
See `Examples.nb` for complete demonstrations including:
- Multi-dimensional chaos attractors
- Bernoulli-weighted random walks
- Fibonacci spiral chaos patterns
- Game-theoretic equilibrium in chaotic markets
## License
MIT License - Feel free to use and modify for your research and projects.
## Contributing
Contributions are welcome! Please feel free to submit pull requests or open issues for bugs and feature requests.
## Author
Created for advanced chaos theory research and mathematical simulation. |