(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* ChaosSim - Chaos Simulation System *) (* Combining Bernoulli Numbers, Fibonacci Sequences, and Nash Equilibrium *) (* ::Title:: *) (*ChaosSim: Advanced Chaos Simulation Framework*) (* ::Section:: *) (*Initialization and Setup*) (* Load utility functions *) Get[FileNameJoin[{NotebookDirectory[], "MathUtils.wl"}]] (* Set random seed for reproducibility (optional) *) (* SeedRandom[12345] *) (* ::Section:: *) (*Bernoulli Number-Based Chaos Generation*) (* ::Subsection:: *) (*Bernoulli Chaos Functions*) BernoulliChaosWeight[n_Integer] := Module[{b}, b = BernoulliB[n]; If[b == 0, 0.001, Abs[N[b]]] ] SimulateBernoulliChaos[iterations_Integer, complexity_Integer: 10] := Module[ {weights, chaosSequence, currentState}, weights = Table[BernoulliChaosWeight[i], {i, 2, complexity}]; weights = weights / Total[weights]; (* Normalize *) currentState = 0.5; chaosSequence = Table[ currentState = Mod[ currentState + Sum[weights[[i]] * Sin[2 * Pi * currentState * i], {i, 1, Length[weights]}] + RandomReal[{-0.1, 0.1}], 1.0 ], {iterations} ]; chaosSequence ] BernoulliAttractor[steps_Integer: 1000, dimension_Integer: 3] := Module[ {points, x, y, z, bn}, x = 0.1; y = 0.1; z = 0.1; points = Table[ bn = BernoulliChaosWeight[Mod[i, 20] + 1]; x = Mod[x + bn * Sin[y] + 0.1 * RandomReal[], 2] - 1; y = Mod[y + bn * Cos[z] + 0.1 * RandomReal[], 2] - 1; z = Mod[z + bn * Sin[x] + 0.1 * RandomReal[], 2] - 1; {x, y, z}, {i, 1, steps} ]; points ] (* ::Section:: *) (*Fibonacci-Based Chaos Patterns*) (* ::Subsection:: *) (*Fibonacci Chaos Functions*) FibonacciChaosSequence[depth_Integer, variance_Real: 0.1] := Module[ {fibs, ratios, chaosSeq}, (* Generate Fibonacci numbers *) fibs = Table[Fibonacci[n], {n, 1, depth}]; (* Calculate golden ratio approximations *) ratios = Table[N[fibs[[i + 1]] / fibs[[i]]], {i, 1, depth - 1}]; (* Create chaos from ratio deviations *) chaosSeq = Table[ Mod[ratios[[i]] + variance * RandomReal[{-1, 1}], 2], {i, 1, Length[ratios]} ]; chaosSeq ] FibonacciSpiral3D[turns_Integer: 20, pointsPerTurn_Integer: 50] := Module[ {goldenAngle, points, theta, r, z, fib}, goldenAngle = 2.0 * Pi * (1 - 1/GoldenRatio); points = Table[ fib = Fibonacci[Floor[i / 100] + 1]; theta = i * goldenAngle; r = Sqrt[i] / Sqrt[turns * pointsPerTurn]; z = (i / (turns * pointsPerTurn)) * fib * 0.01; {r * Cos[theta], r * Sin[theta], z + 0.01 * RandomReal[{-1, 1}]}, {i, 1, turns * pointsPerTurn} ]; points ] FibonacciChaosMap[iterations_Integer: 1000] := Module[ {sequence, x, fn, fnMinus1}, x = 0.5; fn = 1; fnMinus1 = 1; sequence = Table[ (* Update Fibonacci numbers *) {fn, fnMinus1} = {fn + fnMinus1, fn}; (* Create chaotic map using Fibonacci ratio *) x = Mod[ x * N[fn/fnMinus1] * (1 - x) + 0.05 * RandomReal[{-1, 1}], 1.0 ], {i, 1, iterations} ]; sequence ] (* ::Section:: *) (*Nash Equilibrium and Game Theory*) (* ::Subsection:: *) (*Game Theory Functions*) (* Two-player game Nash equilibrium finder *) FindNashEquilibrium[payoffMatrix1_List, payoffMatrix2_List] := Module[ {strategies1, strategies2, bestResponses1, bestResponses2, equilibria}, (* Find best responses for player 1 *) bestResponses1 = Table[ Position[payoffMatrix1[[All, j]], Max[payoffMatrix1[[All, j]]]], {j, 1, Length[payoffMatrix1[[1]]]} ]; (* Find best responses for player 2 *) bestResponses2 = Table[ Position[payoffMatrix2[[i, All]], Max[payoffMatrix2[[i, All]]]], {i, 1, Length[payoffMatrix2]} ]; (* Find mutual best responses (pure strategy Nash equilibria) *) equilibria = {}; Do[ If[MemberQ[Flatten[bestResponses1[[j]], 1], {i}] && MemberQ[Flatten[bestResponses2[[i]], 1], {j}], AppendTo[equilibria, {i, j}] ], {i, 1, Length[payoffMatrix1]}, {j, 1, Length[payoffMatrix1[[1]]]} ]; equilibria ] (* Chaotic game simulation with evolving payoffs *) ChaosGameSimulation[rounds_Integer, players_Integer: 2, volatility_Real: 0.2] := Module[ {payoffs, history, currentStrategy, equilibrium}, (* Initialize random payoff matrices *) payoffs = { RandomReal[{-1, 1}, {3, 3}], RandomReal[{-1, 1}, {3, 3}] }; history = Table[ (* Find Nash equilibrium *) equilibrium = FindNashEquilibrium[payoffs[[1]], payoffs[[2]]]; (* Record current state *) currentStrategy = If[Length[equilibrium] > 0, equilibrium[[1]], {RandomInteger[{1, 3}], RandomInteger[{1, 3}]} ]; (* Evolve payoff matrices chaotically *) payoffs = Map[ # + volatility * RandomReal[{-1, 1}, Dimensions[#]] &, payoffs ]; {round, currentStrategy, equilibrium}, {round, 1, rounds} ]; history ] (* Nash equilibrium in chaos: Multiple agents competing *) MultiAgentChaosEquilibrium[agents_Integer: 5, iterations_Integer: 100] := Module[ {states, fitness, chaos}, (* Initialize agent states *) states = RandomReal[{0, 1}, agents]; chaos = Table[ (* Calculate fitness based on Bernoulli-weighted distance *) fitness = Table[ Sum[ BernoulliChaosWeight[j] * Abs[states[[i]] - states[[j]]], {j, 1, agents} ], {i, 1, agents} ]; (* Update states toward Nash equilibrium (minimize conflict) *) states = Table[ Mod[ states[[i]] + 0.1 * (Mean[states] - states[[i]]) + 0.05 * RandomReal[{-1, 1}], 1.0 ], {i, 1, agents} ]; {iter, states, fitness}, {iter, 1, iterations} ]; chaos ] (* ::Section:: *) (*Combined Chaos Simulation*) (* ::Subsection:: *) (*Integrated Chaos Functions*) UnifiedChaosSimulation[steps_Integer: 500] := Module[ {bernoulliComponent, fibonacciComponent, gameComponent, combined}, (* Generate all three components *) bernoulliComponent = SimulateBernoulliChaos[steps, 15]; fibonacciComponent = FibonacciChaosMap[steps]; gameComponent = MultiAgentChaosEquilibrium[5, steps]; (* Combine into unified chaos signature *) combined = Table[ { bernoulliComponent[[i]], fibonacciComponent[[i]], Mean[gameComponent[[i, 2]]] }, {i, 1, steps} ]; combined ] ChaosCorrelationAnalysis[data_List] := Module[ {bernoulli, fibonacci, nash, correlations}, bernoulli = data[[All, 1]]; fibonacci = data[[All, 2]]; nash = data[[All, 3]]; correlations = { {"Bernoulli-Fibonacci", Correlation[bernoulli, fibonacci]}, {"Bernoulli-Nash", Correlation[bernoulli, nash]}, {"Fibonacci-Nash", Correlation[fibonacci, nash]} }; correlations ] (* ::Section:: *) (*Visualization Helpers*) PlotBernoulliChaos[data_List] := ListPlot[data, PlotStyle -> {Blue, PointSize[Small]}, PlotLabel -> "Bernoulli Number Chaos", AxesLabel -> {"Iteration", "State"}, ImageSize -> Large ] PlotFibonacciChaos[data_List] := ListPlot[data, PlotStyle -> {Orange, PointSize[Small]}, PlotLabel -> "Fibonacci Chaos Sequence", AxesLabel -> {"Iteration", "State"}, ImageSize -> Large ] Plot3DChaos[points_List] := ListPointPlot3D[points, PlotStyle -> {ColorFunction -> "Rainbow", PointSize[Tiny]}, BoxRatios -> {1, 1, 1}, ImageSize -> Large, PlotLabel -> "3D Chaos Attractor" ] (* ::Section:: *) (*Example Usage*) (* Uncomment to run examples *) (* Print["=== ChaosSim Initialized ==="] Print["Generating Bernoulli Chaos..."] bernoulliData = SimulateBernoulliChaos[500, 12]; PlotBernoulliChaos[bernoulliData] Print["Generating Fibonacci Chaos..."] fibData = FibonacciChaosSequence[100, 0.15]; PlotFibonacciChaos[fibData] Print["Finding Nash Equilibrium..."] payoff1 = {{3, 0}, {5, 1}}; payoff2 = {{3, 5}, {0, 1}}; equilibria = FindNashEquilibrium[payoff1, payoff2] Print["Running Unified Chaos Simulation..."] unified = UnifiedChaosSimulation[300]; correlations = ChaosCorrelationAnalysis[unified] *) Print["ChaosSim loaded successfully. All functions available."]