resnet18_anomaly / src /dashboard.py
Swarno-Coder's picture
Upload folder using huggingface_hub
1a4a0d3 verified
import streamlit as st
import cv2
import numpy as np
from src.preprocess import preprocess_image, camera_stream, overlay_heatmap
from src.gradcam import GradCAM
import torch
from PIL import Image
import requests
st.title("AutoVision: Real-Time Defect Detection")
# Load models
@st.cache_resource
def load_models():
gradcam = GradCAM('../models/resnet18_anomaly.pth')
return gradcam
gradcam = load_models()
classes = ['normal', 'crazing', 'inclusion', 'pits', 'pitted_surface', 'rolled-in_scale', 'scratches']
# Real-time camera feed
frame_placeholder = st.empty()
prediction_placeholder = st.empty()
# Optional: Use API for prediction (if backend running)
use_api = st.checkbox("Use FastAPI Backend for Inference")
for frame in camera_stream():
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Preprocess for inference
input_data = preprocess_image(rgb_frame)
input_tensor = torch.from_numpy(input_data).float()
if use_api:
# Upload to API (simplified; in practice, use multipart)
# For demo, use local PyTorch
pass
# Local inference with PyTorch (for Grad-CAM compatibility)
with torch.no_grad():
output = gradcam.model(input_tensor)
pred = output.argmax().item()
confidence = torch.softmax(output, dim=1).max().item()
# Generate Grad-CAM
heatmap = gradcam.generate(input_tensor, pred)
# Overlay
overlaid = overlay_heatmap(rgb_frame, heatmap)
frame_placeholder.image(overlaid, channels="RGB")
prediction_placeholder.markdown(f"**Prediction:** {classes[pred]} ({confidence:.2%})")
st.info("Press Ctrl+C to stop camera.")