|
|
import os
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torch.optim as optim
|
|
|
from torch.utils.data import DataLoader
|
|
|
from torchvision import datasets, transforms
|
|
|
from src.model import get_model, get_transforms
|
|
|
import numpy as np
|
|
|
from sklearn.metrics import accuracy_score
|
|
|
|
|
|
|
|
|
|
|
|
DATA_DIR = '../data/neu_surface_defect_database'
|
|
|
BATCH_SIZE = 32
|
|
|
EPOCHS = 10
|
|
|
LEARNING_RATE = 0.001
|
|
|
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
def main():
|
|
|
transform = get_transforms()
|
|
|
|
|
|
train_dataset = datasets.ImageFolder(os.path.join(DATA_DIR, 'train'), transform=transform)
|
|
|
val_dataset = datasets.ImageFolder(os.path.join(DATA_DIR, 'val'), transform=transform)
|
|
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
|
|
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
|
|
|
|
|
|
model = get_model(pretrained=True).to(DEVICE)
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
|
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
|
|
|
|
|
for epoch in range(EPOCHS):
|
|
|
model.train()
|
|
|
running_loss = 0.0
|
|
|
for inputs, labels in train_loader:
|
|
|
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
|
|
|
optimizer.zero_grad()
|
|
|
outputs = model(inputs)
|
|
|
loss = criterion(outputs, labels)
|
|
|
loss.backward()
|
|
|
optimizer.step()
|
|
|
running_loss += loss.item()
|
|
|
|
|
|
print(f'Epoch {epoch+1}/{EPOCHS}, Loss: {running_loss / len(train_loader):.4f}')
|
|
|
|
|
|
|
|
|
model.eval()
|
|
|
preds, trues = [], []
|
|
|
with torch.no_grad():
|
|
|
for inputs, labels in val_loader:
|
|
|
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
|
|
|
outputs = model(inputs)
|
|
|
_, predicted = torch.max(outputs, 1)
|
|
|
preds.extend(predicted.cpu().numpy())
|
|
|
trues.extend(labels.cpu().numpy())
|
|
|
|
|
|
acc = accuracy_score(trues, preds)
|
|
|
print(f'Validation Accuracy: {acc:.4f}')
|
|
|
|
|
|
|
|
|
torch.save(model.state_dict(), '../models/resnet18_anomaly.pth')
|
|
|
|
|
|
|
|
|
model.eval()
|
|
|
dummy_input = torch.randn(1, 3, 224, 224).to(DEVICE)
|
|
|
torch.onnx.export(model, dummy_input, '../models/resnet18_anomaly.onnx',
|
|
|
export_params=True, opset_version=11,
|
|
|
do_constant_folding=True,
|
|
|
input_names=['input'], output_names=['output'])
|
|
|
|
|
|
print('Model trained and exported to ONNX!')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
main() |