File size: 1,402 Bytes
ed00d52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from transformers import PretrainedConfig


class LIMEConfig(PretrainedConfig):
    model_type = "lime"

    def __init__(
            self,
            vocab_size=50000,
            d_model=1536,
            num_encoder_layers=0,
            num_decoder_layers=32,
            num_heads=24,
            dff=6144,
            dropout_rate=0.0,
            max_position_embeddings=512,
            pad_token_id=0,
            eos_token_id=1,
            use_encoder=False,
            use_flash=True,
            multiple_of=256,
            **kwargs
    ):
        super().__init__(
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            **kwargs
        )

        self.vocab_size = vocab_size
        self.d_model = d_model
        self.num_encoder_layers = num_encoder_layers
        self.num_decoder_layers = num_decoder_layers
        self.num_heads = num_heads
        self.dff = dff
        self.dropout_rate = dropout_rate
        self.max_position_embeddings = max_position_embeddings
        self.pad_token_id = pad_token_id
        self.eos_token_id = eos_token_id
        self.use_encoder = use_encoder
        self.use_flash = use_flash
        self.multiple_of = multiple_of

        # For Transformers library.
        self.is_decoder = True
        self.is_encoder_decoder = False
        self.tie_word_embeddings = True
        self.use_cache = False