upload weights and update README.md
Browse filesSigned-off-by: Zhang Jun <[email protected]>
- .gitattributes +1 -0
- README.md +91 -67
- added_tokens.json +1 -0
- benchmark.jpg +3 -0
- config.json +75 -0
- configuration_ernie4_5_vl.py +658 -0
- generation_config.json +10 -0
- model-00001-of-00029.safetensors +3 -0
- model-00002-of-00029.safetensors +3 -0
- model-00003-of-00029.safetensors +3 -0
- model-00004-of-00029.safetensors +3 -0
- model-00005-of-00029.safetensors +3 -0
- model-00006-of-00029.safetensors +3 -0
- model-00007-of-00029.safetensors +3 -0
- model-00008-of-00029.safetensors +3 -0
- model-00009-of-00029.safetensors +3 -0
- model-00010-of-00029.safetensors +3 -0
- model-00011-of-00029.safetensors +3 -0
- model-00012-of-00029.safetensors +3 -0
- model-00013-of-00029.safetensors +3 -0
- model-00014-of-00029.safetensors +3 -0
- model-00015-of-00029.safetensors +3 -0
- model-00016-of-00029.safetensors +3 -0
- model-00017-of-00029.safetensors +3 -0
- model-00018-of-00029.safetensors +3 -0
- model-00019-of-00029.safetensors +3 -0
- model-00020-of-00029.safetensors +3 -0
- model-00021-of-00029.safetensors +3 -0
- model-00022-of-00029.safetensors +3 -0
- model-00023-of-00029.safetensors +3 -0
- model-00024-of-00029.safetensors +3 -0
- model-00025-of-00029.safetensors +3 -0
- model-00026-of-00029.safetensors +3 -0
- model-00027-of-00029.safetensors +3 -0
- model-00028-of-00029.safetensors +3 -0
- model-00029-of-00029.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_ernie4_5_vl.py +0 -0
- preprocessor_config.json +29 -0
- processing_ernie4_5_vl.py +1821 -0
- special_tokens_map.json +1 -0
- tokenizer.model +3 -0
- tokenizer_config.json +22 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
benchmark.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -17,7 +17,7 @@ library_name: transformers
|
|
| 17 |
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Baidu-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 18 |
</a>
|
| 19 |
<a href="https://github.com/PaddlePaddle/ERNIE" target="_blank" style="margin: 2px;">
|
| 20 |
-
<img alt="
|
| 21 |
</a>
|
| 22 |
<a href="https://ernie.baidu.com/blog/ernie4.5" target="_blank" style="margin: 2px;">
|
| 23 |
<img alt="Blog" src="https://img.shields.io/badge/🖖_Blog-ERNIE4.5-A020A0" style="display: inline-block; vertical-align: middle;"/>
|
|
@@ -28,6 +28,9 @@ library_name: transformers
|
|
| 28 |
<a href="https://x.com/PaddlePaddle" target="_blank" style="margin: 2px;">
|
| 29 |
<img alt="X" src="https://img.shields.io/badge/X-PaddlePaddle-6080F0"?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 30 |
</a>
|
|
|
|
|
|
|
|
|
|
| 31 |
</div>
|
| 32 |
|
| 33 |
<div align="center" style="line-height: 1;">
|
|
@@ -36,75 +39,34 @@ library_name: transformers
|
|
| 36 |
</a>
|
| 37 |
</div>
|
| 38 |
|
| 39 |
-
# ERNIE-4.5-VL-28B-A3B-Thinking
|
| 40 |
|
| 41 |
## Model Highlights
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
In **ERNIE-4.5-VL-28B-A3B-Thinking**, we adopt a more explicit expression mechanism to enhance the user experience in triggering grounding and pointing capabilities. Additionally, we introduced think-with-images features such as image zooming and image search, which significantly improve the model’s ability to interact with its environment. These enhancements form a key foundation for building a multimodal agent.
|
| 46 |
-
|
| 47 |
-
# Key Capabilities
|
| 48 |
-
- **Visual Reasoning**: Strengthened by large-scale midtrain and RL optimization, the model demonstrates superior multi-step reasoning, diagram interpretation, and causal inference across complex visual tasks.
|
| 49 |
-
- **STEM**: Excels in visual–scientific problem solving, integrating symbolic math, geometry, and experimental visualization for deeper analytical comprehension.
|
| 50 |
-
- **Visual Grounding**: Enhanced grounding mechanisms, refined with community feedback, enable precise object–language alignment and contextual awareness in real-world visual scenes.
|
| 51 |
-
- **Thinking with Images**: Extends beyond image comprehension to use image-related tools for reasoning, annotation, and manipulation—enabling the model to think through visual interfaces and act as an intelligent visual agent.
|
| 52 |
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
|
| 56 |
-
|
| 57 |
|
|
|
|
| 58 |
|
|
|
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
## Quickstart
|
| 62 |
|
| 63 |
-
###
|
| 64 |
-
|
| 65 |
-
[ERNIEKit](https://github.com/PaddlePaddle/ERNIE) is a training toolkit based on PaddlePaddle, specifically designed for the ERNIE series of open-source large models. It provides comprehensive support for scenarios such as instruction fine-tuning (SFT, LoRA) and alignment training (DPO), ensuring optimal performance.
|
| 66 |
-
|
| 67 |
-
Usage Examples:
|
| 68 |
-
|
| 69 |
-
```bash
|
| 70 |
-
# Download model
|
| 71 |
-
huggingface-cli download baidu/ERNIE-4.5-VL-28B-A3B-Thinking --local-dir baidu/ERNIE-4.5-VL-28B-A3B-Thinking
|
| 72 |
-
# SFT
|
| 73 |
-
erniekit train examples/configs/ERNIE-4.5-VL-28B-A3B-Thinking/sft/run_sft_lora_8k.yaml
|
| 74 |
-
# SFT (Function Call)
|
| 75 |
-
erniekit train examples/configs/ERNIE-4.5-VL-28B-A3B-Thinking/sft_function_call/run_sft_8k.yaml
|
| 76 |
-
```
|
| 77 |
-
|
| 78 |
-
For more detailed examples, including SFT with LoRA, multi-GPU configurations, and advanced scripts, please refer to the examples folder within the [ERNIEKit](https://github.com/PaddlePaddle/ERNIE) repository.
|
| 79 |
-
|
| 80 |
-
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
### vLLM inference
|
| 85 |
-
|
| 86 |
-
Install vllm main branch
|
| 87 |
-
```bash
|
| 88 |
-
pip install uv
|
| 89 |
-
uv pip install -U vllm --pre --extra-index-url https://wheels.vllm.ai/nightly --extra-index-url https://download.pytorch.org/whl/cu129 --index-strategy unsafe-best-match
|
| 90 |
-
```
|
| 91 |
-
Run vllm
|
| 92 |
-
```bash
|
| 93 |
-
# 80G*1 GPU,If an error occurs, add the --gpu-memory-utilization 0.95 and try again
|
| 94 |
-
vllm serve baidu/ERNIE-4.5-VL-28B-A3B-Thinking --trust-remote-code
|
| 95 |
-
```
|
| 96 |
-
Run vllm using `reasoning-parser` and `tool-call-parser`
|
| 97 |
-
```bash
|
| 98 |
-
# 80G*1 GPU,If an error occurs, add the --gpu-memory-utilization 0.95 and try again
|
| 99 |
-
vllm serve baidu/ERNIE-4.5-VL-28B-A3B-Thinking --trust-remote-code \
|
| 100 |
-
--reasoning-parser ernie45 \
|
| 101 |
-
--tool-call-parser ernie45 \
|
| 102 |
-
--enable-auto-tool-choice
|
| 103 |
-
```
|
| 104 |
-
|
| 105 |
-
### Using `transformers` library
|
| 106 |
-
|
| 107 |
-
Here is an example of how to use the transformers library for inference:
|
| 108 |
|
| 109 |
```python
|
| 110 |
import torch
|
|
@@ -119,24 +81,30 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 119 |
)
|
| 120 |
|
| 121 |
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 122 |
-
processor.eval()
|
| 123 |
model.add_image_preprocess(processor)
|
| 124 |
|
| 125 |
messages = [
|
| 126 |
{
|
| 127 |
"role": "user",
|
| 128 |
"content": [
|
| 129 |
-
{
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
]
|
| 132 |
},
|
| 133 |
]
|
| 134 |
|
| 135 |
-
text = processor.apply_chat_template(
|
| 136 |
messages,
|
| 137 |
tokenize=False,
|
| 138 |
add_generation_prompt=True,
|
| 139 |
-
chat_template_kwargs={"options": {"thinking_mode": "close"}},
|
| 140 |
)
|
| 141 |
image_inputs, video_inputs = processor.process_vision_info(messages)
|
| 142 |
inputs = processor(
|
|
@@ -153,19 +121,75 @@ inputs = inputs.to(device)
|
|
| 153 |
generated_ids = model.generate(
|
| 154 |
inputs=inputs['input_ids'].to(device),
|
| 155 |
**inputs,
|
| 156 |
-
max_new_tokens=
|
| 157 |
use_cache=False
|
| 158 |
)
|
| 159 |
output_text = processor.decode(generated_ids[0][len(inputs['input_ids'][0]):])
|
| 160 |
print(output_text)
|
| 161 |
```
|
| 162 |
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
[
|
|
|
|
|
|
|
| 166 |
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
|
|
|
| 169 |
|
| 170 |
## License
|
| 171 |
|
|
@@ -183,4 +207,4 @@ If you find ERNIE 4.5 useful or wish to use it in your projects, please kindly c
|
|
| 183 |
primaryClass={cs.CL},
|
| 184 |
howpublished={\url{https://ernie.baidu.com/blog/publication/ERNIE_Technical_Report.pdf}}
|
| 185 |
}
|
| 186 |
-
```
|
|
|
|
| 17 |
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Baidu-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 18 |
</a>
|
| 19 |
<a href="https://github.com/PaddlePaddle/ERNIE" target="_blank" style="margin: 2px;">
|
| 20 |
+
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-ERNIE-000?logo=github&color=0000FF" style="display: inline-block; vertical-align: middle;"/>
|
| 21 |
</a>
|
| 22 |
<a href="https://ernie.baidu.com/blog/ernie4.5" target="_blank" style="margin: 2px;">
|
| 23 |
<img alt="Blog" src="https://img.shields.io/badge/🖖_Blog-ERNIE4.5-A020A0" style="display: inline-block; vertical-align: middle;"/>
|
|
|
|
| 28 |
<a href="https://x.com/PaddlePaddle" target="_blank" style="margin: 2px;">
|
| 29 |
<img alt="X" src="https://img.shields.io/badge/X-PaddlePaddle-6080F0"?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 30 |
</a>
|
| 31 |
+
<a href="https://x.com/ErnieforDevs" target="_blank" style="margin: 2px;">
|
| 32 |
+
<img alt="X" src="https://img.shields.io/badge/X-ErnieforDevs-A080F0"?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 33 |
+
</a>
|
| 34 |
</div>
|
| 35 |
|
| 36 |
<div align="center" style="line-height: 1;">
|
|
|
|
| 39 |
</a>
|
| 40 |
</div>
|
| 41 |
|
| 42 |
+
# 🚀 **Introducing ERNIE-4.5-VL-28B-A3B-Thinking: A Breakthrough in Multimodal AI**
|
| 43 |
|
| 44 |
## Model Highlights
|
| 45 |
|
| 46 |
+
Built upon the powerful ERNIE-4.5-VL-28B-A3B architecture, the newly upgraded **ERNIE-4.5-VL-28B-A3B-Thinking** achieves a remarkable leap forward in multimodal reasoning capabilities. 🧠✨ Through an extensive mid-training phase, the model absorbed a vast and highly diverse corpus of premium visual-language reasoning data. This massive-scale training process dramatically boosted the model's representation power while deepening the semantic alignment between visual and language modalities—unlocking unprecedented capabilities in nuanced visual-textual reasoning. 📊
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
The model leverages cutting-edge multimodal reinforcement learning techniques on verifiable tasks, integrating GSPO and IcePop strategies to stabilize MoE training combined with dynamic difficulty sampling for exceptional learning efficiency. ⚡ Responding to strong community demand, we've significantly strengthened the model's grounding performance with improved instruction-following capabilities, making visual grounding functions more accessible than ever. 🎯 Additionally, our innovative "Thinking with Images" feature, when paired with tools like image zooming and image search, dramatically elevates the model's ability to process fine-grained details and handle long-tail visual knowledge. 🔍🖼️
|
| 49 |
|
| 50 |
+
Together, these enhancements form a critical foundation for developing sophisticated multimodal agents, empowering developers and researchers to create next-generation AI applications that push the boundaries of what's possible in visual-language understanding. 🤖🌟
|
| 51 |
|
| 52 |
+

|
| 53 |
|
| 54 |
+
## Key Capabilities
|
| 55 |
|
| 56 |
+
As a lightweight model that activates only **3B parameters** ⚡, **ERNIE-4.5-VL-28B-A3B-Thinking** closely matches the performance of the industry's top flagship models across various benchmarks. 🚀
|
| 57 |
|
| 58 |
+
- **Visual Reasoning** 🧠👁️: Bolstered by large-scale reinforcement learning, the model demonstrates exceptional multi-step reasoning, chart analysis, and causal reasoning capabilities in complex visual tasks! 📊✨
|
| 59 |
+
- **STEM Reasoning** 🔬📐: Leveraging its powerful visual abilities, the model achieves a leap in performance on STEM tasks like solving problems from photos, easily handling even complex questions! 🎯💡
|
| 60 |
+
- **Visual Grounding** 📍🎨: Features more precise grounding and flexible instruction execution, easily triggering grounding functions in complex industrial scenarios for a significant efficiency boost! ⚙️💪
|
| 61 |
+
- **Thinking with Images** 🤔🔍: The model thinks like a human, capable of freely zooming in and out of images to grasp every detail and uncover all information. 🖼️✨
|
| 62 |
+
- **Tool Utilization** 🛠️⚡: Empowered by robust tool-calling capabilities, the model can instantly use functions like image search to easily identify long-tail knowledge and achieve comprehensive information retrieval! 🔎📚
|
| 63 |
+
- **Video Understanding** 🎬🎥: The model possesses outstanding temporal awareness and event localization abilities, accurately identifying content changes across different time segments in a video, making video analysis smarter and more efficient! ⏱️🌟
|
| 64 |
|
| 65 |
## Quickstart
|
| 66 |
|
| 67 |
+
### Using `transformers` Library
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
Here is an example of how to use the `transformers` library for inference:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
```python
|
| 72 |
import torch
|
|
|
|
| 81 |
)
|
| 82 |
|
| 83 |
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
| 84 |
model.add_image_preprocess(processor)
|
| 85 |
|
| 86 |
messages = [
|
| 87 |
{
|
| 88 |
"role": "user",
|
| 89 |
"content": [
|
| 90 |
+
{
|
| 91 |
+
"type": "text",
|
| 92 |
+
"text": "What color clothes is the girl in the picture wearing?"
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"type": "image_url",
|
| 96 |
+
"image_url": {
|
| 97 |
+
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example1.jpg"
|
| 98 |
+
}
|
| 99 |
+
},
|
| 100 |
]
|
| 101 |
},
|
| 102 |
]
|
| 103 |
|
| 104 |
+
text = processor.tokenizer.apply_chat_template(
|
| 105 |
messages,
|
| 106 |
tokenize=False,
|
| 107 |
add_generation_prompt=True,
|
|
|
|
| 108 |
)
|
| 109 |
image_inputs, video_inputs = processor.process_vision_info(messages)
|
| 110 |
inputs = processor(
|
|
|
|
| 121 |
generated_ids = model.generate(
|
| 122 |
inputs=inputs['input_ids'].to(device),
|
| 123 |
**inputs,
|
| 124 |
+
max_new_tokens=1024,
|
| 125 |
use_cache=False
|
| 126 |
)
|
| 127 |
output_text = processor.decode(generated_ids[0][len(inputs['input_ids'][0]):])
|
| 128 |
print(output_text)
|
| 129 |
```
|
| 130 |
|
| 131 |
+
### vLLM Inference
|
| 132 |
+
|
| 133 |
+
Install the vLLM main branch
|
| 134 |
+
|
| 135 |
+
```bash
|
| 136 |
+
pip install uv
|
| 137 |
+
uv pip install -U vllm --pre \
|
| 138 |
+
--extra-index-url https://wheels.vllm.ai/nightly \
|
| 139 |
+
--extra-index-url https://download.pytorch.org/whl/cu129 \
|
| 140 |
+
--index-strategy unsafe-best-match
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
Run vLLM
|
| 144 |
+
|
| 145 |
+
```bash
|
| 146 |
+
# 80G*1 GPU,If an error occurs, add the --gpu-memory-utilization 0.95 and try again
|
| 147 |
+
vllm serve baidu/ERNIE-4.5-VL-28B-A3B-Thinking --trust-remote-code
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
Run vLLM using `reasoning-parser` and `tool-call-parser`
|
| 151 |
+
|
| 152 |
+
```bash
|
| 153 |
+
# 80G*1 GPU,If an error occurs, add the --gpu-memory-utilization 0.95 and try again
|
| 154 |
+
vllm serve baidu/ERNIE-4.5-VL-28B-A3B-Thinking --trust-remote-code \
|
| 155 |
+
--reasoning-parser ernie45 \
|
| 156 |
+
--tool-call-parser ernie45 \
|
| 157 |
+
--enable-auto-tool-choice
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
### FastDeploy Inference
|
| 161 |
+
|
| 162 |
+
Quickly deploy services using FastDeploy as shown below. For more detailed usage, refer to the [FastDeploy GitHub Repository](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/get_started/ernie-4.5-vl-thinking.md).
|
| 163 |
+
|
| 164 |
+
**Note:** For single-card deployment, at least 80GB of GPU memory is required.
|
| 165 |
+
|
| 166 |
+
```bash
|
| 167 |
+
fastdeploy serve --model baidu/ERNIE-4.5-VL-28B-A3B-Thinking \
|
| 168 |
+
--max-model-len 131072 \
|
| 169 |
+
--max-num-seqs 32 \
|
| 170 |
+
--port 8180 \
|
| 171 |
+
--quantization wint8 \
|
| 172 |
+
--reasoning-parser ernie-45-vl-thinking \
|
| 173 |
+
--tool-call-parser ernie-45-vl-thinking \
|
| 174 |
+
--mm-processor-kwargs '{"image_max_pixels": 12845056 }'
|
| 175 |
+
```
|
| 176 |
+
|
| 177 |
+
### Finetuning with ERNIEKit
|
| 178 |
|
| 179 |
+
[ERNIEKit](https://github.com/PaddlePaddle/ERNIE) is a training toolkit based on PaddlePaddle, specifically designed for the ERNIE series of open-source large models. It provides comprehensive support for scenarios such as instruction fine-tuning (SFT, LoRA) and alignment training (DPO), ensuring optimal performance.
|
| 180 |
+
|
| 181 |
+
Usage Examples:
|
| 182 |
|
| 183 |
+
```bash
|
| 184 |
+
# Download model
|
| 185 |
+
huggingface-cli download baidu/ERNIE-4.5-VL-28B-A3B-Thinking --local-dir baidu/ERNIE-4.5-VL-28B-A3B-Thinking
|
| 186 |
+
# SFT
|
| 187 |
+
erniekit train examples/configs/ERNIE-4.5-VL-28B-A3B-Thinking/sft/run_sft_lora_8k.yaml
|
| 188 |
+
# SFT (Function Call)
|
| 189 |
+
erniekit train examples/configs/ERNIE-4.5-VL-28B-A3B-Thinking/sft_function_call/run_sft_8k.yaml
|
| 190 |
+
```
|
| 191 |
|
| 192 |
+
For more detailed examples, including SFT with LoRA, multi-GPU configurations, and advanced scripts, please refer to the examples folder within the [ERNIEKit](https://github.com/PaddlePaddle/ERNIE) repository.
|
| 193 |
|
| 194 |
## License
|
| 195 |
|
|
|
|
| 207 |
primaryClass={cs.CL},
|
| 208 |
howpublished={\url{https://ernie.baidu.com/blog/publication/ERNIE_Technical_Report.pdf}}
|
| 209 |
}
|
| 210 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"<|IMAGE_PLACEHOLDER|>": 100295, "<|AUDIO_PLACEHOLDER|>": 100296, "<|LOC_0|>": 100297, "<|LOC_1|>": 100298, "<|LOC_2|>": 100299, "<|LOC_3|>": 100300, "<|LOC_4|>": 100301, "<|LOC_5|>": 100302, "<|LOC_6|>": 100303, "<|LOC_7|>": 100304, "<|LOC_8|>": 100305, "<|LOC_9|>": 100306, "<|LOC_10|>": 100307, "<|LOC_11|>": 100308, "<|LOC_12|>": 100309, "<|LOC_13|>": 100310, "<|LOC_14|>": 100311, "<|LOC_15|>": 100312, "<|LOC_16|>": 100313, "<|LOC_17|>": 100314, "<|LOC_18|>": 100315, "<|LOC_19|>": 100316, "<|LOC_20|>": 100317, "<|LOC_21|>": 100318, "<|LOC_22|>": 100319, "<|LOC_23|>": 100320, "<|LOC_24|>": 100321, "<|LOC_25|>": 100322, "<|LOC_26|>": 100323, "<|LOC_27|>": 100324, "<|LOC_28|>": 100325, "<|LOC_29|>": 100326, "<|LOC_30|>": 100327, "<|LOC_31|>": 100328, "<|LOC_32|>": 100329, "<|LOC_33|>": 100330, "<|LOC_34|>": 100331, "<|LOC_35|>": 100332, "<|LOC_36|>": 100333, "<|LOC_37|>": 100334, "<|LOC_38|>": 100335, "<|LOC_39|>": 100336, "<|LOC_40|>": 100337, "<|LOC_41|>": 100338, "<|LOC_42|>": 100339, "<|LOC_43|>": 100340, "<|LOC_44|>": 100341, "<|LOC_45|>": 100342, "<|LOC_46|>": 100343, "<|LOC_47|>": 100344, "<|LOC_48|>": 100345, "<|LOC_49|>": 100346, "<|LOC_50|>": 100347, "<|LOC_51|>": 100348, "<|LOC_52|>": 100349, "<|LOC_53|>": 100350, "<|LOC_54|>": 100351, "<|LOC_55|>": 100352, "<|LOC_56|>": 100353, "<|LOC_57|>": 100354, "<|LOC_58|>": 100355, "<|LOC_59|>": 100356, "<|LOC_60|>": 100357, "<|LOC_61|>": 100358, "<|LOC_62|>": 100359, "<|LOC_63|>": 100360, "<|LOC_64|>": 100361, "<|LOC_65|>": 100362, "<|LOC_66|>": 100363, "<|LOC_67|>": 100364, "<|LOC_68|>": 100365, "<|LOC_69|>": 100366, "<|LOC_70|>": 100367, "<|LOC_71|>": 100368, "<|LOC_72|>": 100369, "<|LOC_73|>": 100370, "<|LOC_74|>": 100371, "<|LOC_75|>": 100372, "<|LOC_76|>": 100373, "<|LOC_77|>": 100374, "<|LOC_78|>": 100375, "<|LOC_79|>": 100376, "<|LOC_80|>": 100377, "<|LOC_81|>": 100378, "<|LOC_82|>": 100379, "<|LOC_83|>": 100380, "<|LOC_84|>": 100381, "<|LOC_85|>": 100382, "<|LOC_86|>": 100383, "<|LOC_87|>": 100384, "<|LOC_88|>": 100385, "<|LOC_89|>": 100386, "<|LOC_90|>": 100387, "<|LOC_91|>": 100388, "<|LOC_92|>": 100389, "<|LOC_93|>": 100390, "<|LOC_94|>": 100391, "<|LOC_95|>": 100392, "<|LOC_96|>": 100393, "<|LOC_97|>": 100394, "<|LOC_98|>": 100395, "<|LOC_99|>": 100396, "<|LOC_100|>": 100397, "<|LOC_101|>": 100398, "<|LOC_102|>": 100399, "<|LOC_103|>": 100400, "<|LOC_104|>": 100401, "<|LOC_105|>": 100402, "<|LOC_106|>": 100403, "<|LOC_107|>": 100404, "<|LOC_108|>": 100405, "<|LOC_109|>": 100406, "<|LOC_110|>": 100407, "<|LOC_111|>": 100408, "<|LOC_112|>": 100409, "<|LOC_113|>": 100410, "<|LOC_114|>": 100411, "<|LOC_115|>": 100412, "<|LOC_116|>": 100413, "<|LOC_117|>": 100414, "<|LOC_118|>": 100415, "<|LOC_119|>": 100416, "<|LOC_120|>": 100417, "<|LOC_121|>": 100418, "<|LOC_122|>": 100419, "<|LOC_123|>": 100420, "<|LOC_124|>": 100421, "<|LOC_125|>": 100422, "<|LOC_126|>": 100423, "<|LOC_127|>": 100424, "<|LOC_128|>": 100425, "<|LOC_129|>": 100426, "<|LOC_130|>": 100427, "<|LOC_131|>": 100428, "<|LOC_132|>": 100429, "<|LOC_133|>": 100430, "<|LOC_134|>": 100431, "<|LOC_135|>": 100432, "<|LOC_136|>": 100433, "<|LOC_137|>": 100434, "<|LOC_138|>": 100435, "<|LOC_139|>": 100436, "<|LOC_140|>": 100437, "<|LOC_141|>": 100438, "<|LOC_142|>": 100439, "<|LOC_143|>": 100440, "<|LOC_144|>": 100441, "<|LOC_145|>": 100442, "<|LOC_146|>": 100443, "<|LOC_147|>": 100444, "<|LOC_148|>": 100445, "<|LOC_149|>": 100446, "<|LOC_150|>": 100447, "<|LOC_151|>": 100448, "<|LOC_152|>": 100449, "<|LOC_153|>": 100450, "<|LOC_154|>": 100451, "<|LOC_155|>": 100452, "<|LOC_156|>": 100453, "<|LOC_157|>": 100454, "<|LOC_158|>": 100455, "<|LOC_159|>": 100456, "<|LOC_160|>": 100457, "<|LOC_161|>": 100458, "<|LOC_162|>": 100459, "<|LOC_163|>": 100460, "<|LOC_164|>": 100461, "<|LOC_165|>": 100462, "<|LOC_166|>": 100463, "<|LOC_167|>": 100464, "<|LOC_168|>": 100465, "<|LOC_169|>": 100466, "<|LOC_170|>": 100467, "<|LOC_171|>": 100468, "<|LOC_172|>": 100469, "<|LOC_173|>": 100470, "<|LOC_174|>": 100471, "<|LOC_175|>": 100472, "<|LOC_176|>": 100473, "<|LOC_177|>": 100474, "<|LOC_178|>": 100475, "<|LOC_179|>": 100476, "<|LOC_180|>": 100477, "<|LOC_181|>": 100478, "<|LOC_182|>": 100479, "<|LOC_183|>": 100480, "<|LOC_184|>": 100481, "<|LOC_185|>": 100482, "<|LOC_186|>": 100483, "<|LOC_187|>": 100484, "<|LOC_188|>": 100485, "<|LOC_189|>": 100486, "<|LOC_190|>": 100487, "<|LOC_191|>": 100488, "<|LOC_192|>": 100489, "<|LOC_193|>": 100490, "<|LOC_194|>": 100491, "<|LOC_195|>": 100492, "<|LOC_196|>": 100493, "<|LOC_197|>": 100494, "<|LOC_198|>": 100495, "<|LOC_199|>": 100496, "<|LOC_200|>": 100497, "<|LOC_201|>": 100498, "<|LOC_202|>": 100499, "<|LOC_203|>": 100500, "<|LOC_204|>": 100501, "<|LOC_205|>": 100502, "<|LOC_206|>": 100503, "<|LOC_207|>": 100504, "<|LOC_208|>": 100505, "<|LOC_209|>": 100506, "<|LOC_210|>": 100507, "<|LOC_211|>": 100508, "<|LOC_212|>": 100509, "<|LOC_213|>": 100510, "<|LOC_214|>": 100511, "<|LOC_215|>": 100512, "<|LOC_216|>": 100513, "<|LOC_217|>": 100514, "<|LOC_218|>": 100515, "<|LOC_219|>": 100516, "<|LOC_220|>": 100517, "<|LOC_221|>": 100518, "<|LOC_222|>": 100519, "<|LOC_223|>": 100520, "<|LOC_224|>": 100521, "<|LOC_225|>": 100522, "<|LOC_226|>": 100523, "<|LOC_227|>": 100524, "<|LOC_228|>": 100525, "<|LOC_229|>": 100526, "<|LOC_230|>": 100527, "<|LOC_231|>": 100528, "<|LOC_232|>": 100529, "<|LOC_233|>": 100530, "<|LOC_234|>": 100531, "<|LOC_235|>": 100532, "<|LOC_236|>": 100533, "<|LOC_237|>": 100534, "<|LOC_238|>": 100535, "<|LOC_239|>": 100536, "<|LOC_240|>": 100537, "<|LOC_241|>": 100538, "<|LOC_242|>": 100539, "<|LOC_243|>": 100540, "<|LOC_244|>": 100541, "<|LOC_245|>": 100542, "<|LOC_246|>": 100543, "<|LOC_247|>": 100544, "<|LOC_248|>": 100545, "<|LOC_249|>": 100546, "<|LOC_250|>": 100547, "<|LOC_251|>": 100548, "<|LOC_252|>": 100549, "<|LOC_253|>": 100550, "<|LOC_254|>": 100551, "<|LOC_255|>": 100552, "<|LOC_256|>": 100553, "<|LOC_257|>": 100554, "<|LOC_258|>": 100555, "<|LOC_259|>": 100556, "<|LOC_260|>": 100557, "<|LOC_261|>": 100558, "<|LOC_262|>": 100559, "<|LOC_263|>": 100560, "<|LOC_264|>": 100561, "<|LOC_265|>": 100562, "<|LOC_266|>": 100563, "<|LOC_267|>": 100564, "<|LOC_268|>": 100565, "<|LOC_269|>": 100566, "<|LOC_270|>": 100567, "<|LOC_271|>": 100568, "<|LOC_272|>": 100569, "<|LOC_273|>": 100570, "<|LOC_274|>": 100571, "<|LOC_275|>": 100572, "<|LOC_276|>": 100573, "<|LOC_277|>": 100574, "<|LOC_278|>": 100575, "<|LOC_279|>": 100576, "<|LOC_280|>": 100577, "<|LOC_281|>": 100578, "<|LOC_282|>": 100579, "<|LOC_283|>": 100580, "<|LOC_284|>": 100581, "<|LOC_285|>": 100582, "<|LOC_286|>": 100583, "<|LOC_287|>": 100584, "<|LOC_288|>": 100585, "<|LOC_289|>": 100586, "<|LOC_290|>": 100587, "<|LOC_291|>": 100588, "<|LOC_292|>": 100589, "<|LOC_293|>": 100590, "<|LOC_294|>": 100591, "<|LOC_295|>": 100592, "<|LOC_296|>": 100593, "<|LOC_297|>": 100594, "<|LOC_298|>": 100595, "<|LOC_299|>": 100596, "<|LOC_300|>": 100597, "<|LOC_301|>": 100598, "<|LOC_302|>": 100599, "<|LOC_303|>": 100600, "<|LOC_304|>": 100601, "<|LOC_305|>": 100602, "<|LOC_306|>": 100603, "<|LOC_307|>": 100604, "<|LOC_308|>": 100605, "<|LOC_309|>": 100606, "<|LOC_310|>": 100607, "<|LOC_311|>": 100608, "<|LOC_312|>": 100609, "<|LOC_313|>": 100610, "<|LOC_314|>": 100611, "<|LOC_315|>": 100612, "<|LOC_316|>": 100613, "<|LOC_317|>": 100614, "<|LOC_318|>": 100615, "<|LOC_319|>": 100616, "<|LOC_320|>": 100617, "<|LOC_321|>": 100618, "<|LOC_322|>": 100619, "<|LOC_323|>": 100620, "<|LOC_324|>": 100621, "<|LOC_325|>": 100622, "<|LOC_326|>": 100623, "<|LOC_327|>": 100624, "<|LOC_328|>": 100625, "<|LOC_329|>": 100626, "<|LOC_330|>": 100627, "<|LOC_331|>": 100628, "<|LOC_332|>": 100629, "<|LOC_333|>": 100630, "<|LOC_334|>": 100631, "<|LOC_335|>": 100632, "<|LOC_336|>": 100633, "<|LOC_337|>": 100634, "<|LOC_338|>": 100635, "<|LOC_339|>": 100636, "<|LOC_340|>": 100637, "<|LOC_341|>": 100638, "<|LOC_342|>": 100639, "<|LOC_343|>": 100640, "<|LOC_344|>": 100641, "<|LOC_345|>": 100642, "<|LOC_346|>": 100643, "<|LOC_347|>": 100644, "<|LOC_348|>": 100645, "<|LOC_349|>": 100646, "<|LOC_350|>": 100647, "<|LOC_351|>": 100648, "<|LOC_352|>": 100649, "<|LOC_353|>": 100650, "<|LOC_354|>": 100651, "<|LOC_355|>": 100652, "<|LOC_356|>": 100653, "<|LOC_357|>": 100654, "<|LOC_358|>": 100655, "<|LOC_359|>": 100656, "<|LOC_360|>": 100657, "<|LOC_361|>": 100658, "<|LOC_362|>": 100659, "<|LOC_363|>": 100660, "<|LOC_364|>": 100661, "<|LOC_365|>": 100662, "<|LOC_366|>": 100663, "<|LOC_367|>": 100664, "<|LOC_368|>": 100665, "<|LOC_369|>": 100666, "<|LOC_370|>": 100667, "<|LOC_371|>": 100668, "<|LOC_372|>": 100669, "<|LOC_373|>": 100670, "<|LOC_374|>": 100671, "<|LOC_375|>": 100672, "<|LOC_376|>": 100673, "<|LOC_377|>": 100674, "<|LOC_378|>": 100675, "<|LOC_379|>": 100676, "<|LOC_380|>": 100677, "<|LOC_381|>": 100678, "<|LOC_382|>": 100679, "<|LOC_383|>": 100680, "<|LOC_384|>": 100681, "<|LOC_385|>": 100682, "<|LOC_386|>": 100683, "<|LOC_387|>": 100684, "<|LOC_388|>": 100685, "<|LOC_389|>": 100686, "<|LOC_390|>": 100687, "<|LOC_391|>": 100688, "<|LOC_392|>": 100689, "<|LOC_393|>": 100690, "<|LOC_394|>": 100691, "<|LOC_395|>": 100692, "<|LOC_396|>": 100693, "<|LOC_397|>": 100694, "<|LOC_398|>": 100695, "<|LOC_399|>": 100696, "<|LOC_400|>": 100697, "<|LOC_401|>": 100698, "<|LOC_402|>": 100699, "<|LOC_403|>": 100700, "<|LOC_404|>": 100701, "<|LOC_405|>": 100702, "<|LOC_406|>": 100703, "<|LOC_407|>": 100704, "<|LOC_408|>": 100705, "<|LOC_409|>": 100706, "<|LOC_410|>": 100707, "<|LOC_411|>": 100708, "<|LOC_412|>": 100709, "<|LOC_413|>": 100710, "<|LOC_414|>": 100711, "<|LOC_415|>": 100712, "<|LOC_416|>": 100713, "<|LOC_417|>": 100714, "<|LOC_418|>": 100715, "<|LOC_419|>": 100716, "<|LOC_420|>": 100717, "<|LOC_421|>": 100718, "<|LOC_422|>": 100719, "<|LOC_423|>": 100720, "<|LOC_424|>": 100721, "<|LOC_425|>": 100722, "<|LOC_426|>": 100723, "<|LOC_427|>": 100724, "<|LOC_428|>": 100725, "<|LOC_429|>": 100726, "<|LOC_430|>": 100727, "<|LOC_431|>": 100728, "<|LOC_432|>": 100729, "<|LOC_433|>": 100730, "<|LOC_434|>": 100731, "<|LOC_435|>": 100732, "<|LOC_436|>": 100733, "<|LOC_437|>": 100734, "<|LOC_438|>": 100735, "<|LOC_439|>": 100736, "<|LOC_440|>": 100737, "<|LOC_441|>": 100738, "<|LOC_442|>": 100739, "<|LOC_443|>": 100740, "<|LOC_444|>": 100741, "<|LOC_445|>": 100742, "<|LOC_446|>": 100743, "<|LOC_447|>": 100744, "<|LOC_448|>": 100745, "<|LOC_449|>": 100746, "<|LOC_450|>": 100747, "<|LOC_451|>": 100748, "<|LOC_452|>": 100749, "<|LOC_453|>": 100750, "<|LOC_454|>": 100751, "<|LOC_455|>": 100752, "<|LOC_456|>": 100753, "<|LOC_457|>": 100754, "<|LOC_458|>": 100755, "<|LOC_459|>": 100756, "<|LOC_460|>": 100757, "<|LOC_461|>": 100758, "<|LOC_462|>": 100759, "<|LOC_463|>": 100760, "<|LOC_464|>": 100761, "<|LOC_465|>": 100762, "<|LOC_466|>": 100763, "<|LOC_467|>": 100764, "<|LOC_468|>": 100765, "<|LOC_469|>": 100766, "<|LOC_470|>": 100767, "<|LOC_471|>": 100768, "<|LOC_472|>": 100769, "<|LOC_473|>": 100770, "<|LOC_474|>": 100771, "<|LOC_475|>": 100772, "<|LOC_476|>": 100773, "<|LOC_477|>": 100774, "<|LOC_478|>": 100775, "<|LOC_479|>": 100776, "<|LOC_480|>": 100777, "<|LOC_481|>": 100778, "<|LOC_482|>": 100779, "<|LOC_483|>": 100780, "<|LOC_484|>": 100781, "<|LOC_485|>": 100782, "<|LOC_486|>": 100783, "<|LOC_487|>": 100784, "<|LOC_488|>": 100785, "<|LOC_489|>": 100786, "<|LOC_490|>": 100787, "<|LOC_491|>": 100788, "<|LOC_492|>": 100789, "<|LOC_493|>": 100790, "<|LOC_494|>": 100791, "<|LOC_495|>": 100792, "<|LOC_496|>": 100793, "<|LOC_497|>": 100794, "<|LOC_498|>": 100795, "<|LOC_499|>": 100796, "<|LOC_500|>": 100797, "<|LOC_501|>": 100798, "<|LOC_502|>": 100799, "<|LOC_503|>": 100800, "<|LOC_504|>": 100801, "<|LOC_505|>": 100802, "<|LOC_506|>": 100803, "<|LOC_507|>": 100804, "<|LOC_508|>": 100805, "<|LOC_509|>": 100806, "<|LOC_510|>": 100807, "<|LOC_511|>": 100808, "<|LOC_512|>": 100809, "<|LOC_513|>": 100810, "<|LOC_514|>": 100811, "<|LOC_515|>": 100812, "<|LOC_516|>": 100813, "<|LOC_517|>": 100814, "<|LOC_518|>": 100815, "<|LOC_519|>": 100816, "<|LOC_520|>": 100817, "<|LOC_521|>": 100818, "<|LOC_522|>": 100819, "<|LOC_523|>": 100820, "<|LOC_524|>": 100821, "<|LOC_525|>": 100822, "<|LOC_526|>": 100823, "<|LOC_527|>": 100824, "<|LOC_528|>": 100825, "<|LOC_529|>": 100826, "<|LOC_530|>": 100827, "<|LOC_531|>": 100828, "<|LOC_532|>": 100829, "<|LOC_533|>": 100830, "<|LOC_534|>": 100831, "<|LOC_535|>": 100832, "<|LOC_536|>": 100833, "<|LOC_537|>": 100834, "<|LOC_538|>": 100835, "<|LOC_539|>": 100836, "<|LOC_540|>": 100837, "<|LOC_541|>": 100838, "<|LOC_542|>": 100839, "<|LOC_543|>": 100840, "<|LOC_544|>": 100841, "<|LOC_545|>": 100842, "<|LOC_546|>": 100843, "<|LOC_547|>": 100844, "<|LOC_548|>": 100845, "<|LOC_549|>": 100846, "<|LOC_550|>": 100847, "<|LOC_551|>": 100848, "<|LOC_552|>": 100849, "<|LOC_553|>": 100850, "<|LOC_554|>": 100851, "<|LOC_555|>": 100852, "<|LOC_556|>": 100853, "<|LOC_557|>": 100854, "<|LOC_558|>": 100855, "<|LOC_559|>": 100856, "<|LOC_560|>": 100857, "<|LOC_561|>": 100858, "<|LOC_562|>": 100859, "<|LOC_563|>": 100860, "<|LOC_564|>": 100861, "<|LOC_565|>": 100862, "<|LOC_566|>": 100863, "<|LOC_567|>": 100864, "<|LOC_568|>": 100865, "<|LOC_569|>": 100866, "<|LOC_570|>": 100867, "<|LOC_571|>": 100868, "<|LOC_572|>": 100869, "<|LOC_573|>": 100870, "<|LOC_574|>": 100871, "<|LOC_575|>": 100872, "<|LOC_576|>": 100873, "<|LOC_577|>": 100874, "<|LOC_578|>": 100875, "<|LOC_579|>": 100876, "<|LOC_580|>": 100877, "<|LOC_581|>": 100878, "<|LOC_582|>": 100879, "<|LOC_583|>": 100880, "<|LOC_584|>": 100881, "<|LOC_585|>": 100882, "<|LOC_586|>": 100883, "<|LOC_587|>": 100884, "<|LOC_588|>": 100885, "<|LOC_589|>": 100886, "<|LOC_590|>": 100887, "<|LOC_591|>": 100888, "<|LOC_592|>": 100889, "<|LOC_593|>": 100890, "<|LOC_594|>": 100891, "<|LOC_595|>": 100892, "<|LOC_596|>": 100893, "<|LOC_597|>": 100894, "<|LOC_598|>": 100895, "<|LOC_599|>": 100896, "<|LOC_600|>": 100897, "<|LOC_601|>": 100898, "<|LOC_602|>": 100899, "<|LOC_603|>": 100900, "<|LOC_604|>": 100901, "<|LOC_605|>": 100902, "<|LOC_606|>": 100903, "<|LOC_607|>": 100904, "<|LOC_608|>": 100905, "<|LOC_609|>": 100906, "<|LOC_610|>": 100907, "<|LOC_611|>": 100908, "<|LOC_612|>": 100909, "<|LOC_613|>": 100910, "<|LOC_614|>": 100911, "<|LOC_615|>": 100912, "<|LOC_616|>": 100913, "<|LOC_617|>": 100914, "<|LOC_618|>": 100915, "<|LOC_619|>": 100916, "<|LOC_620|>": 100917, "<|LOC_621|>": 100918, "<|LOC_622|>": 100919, "<|LOC_623|>": 100920, "<|LOC_624|>": 100921, "<|LOC_625|>": 100922, "<|LOC_626|>": 100923, "<|LOC_627|>": 100924, "<|LOC_628|>": 100925, "<|LOC_629|>": 100926, "<|LOC_630|>": 100927, "<|LOC_631|>": 100928, "<|LOC_632|>": 100929, "<|LOC_633|>": 100930, "<|LOC_634|>": 100931, "<|LOC_635|>": 100932, "<|LOC_636|>": 100933, "<|LOC_637|>": 100934, "<|LOC_638|>": 100935, "<|LOC_639|>": 100936, "<|LOC_640|>": 100937, "<|LOC_641|>": 100938, "<|LOC_642|>": 100939, "<|LOC_643|>": 100940, "<|LOC_644|>": 100941, "<|LOC_645|>": 100942, "<|LOC_646|>": 100943, "<|LOC_647|>": 100944, "<|LOC_648|>": 100945, "<|LOC_649|>": 100946, "<|LOC_650|>": 100947, "<|LOC_651|>": 100948, "<|LOC_652|>": 100949, "<|LOC_653|>": 100950, "<|LOC_654|>": 100951, "<|LOC_655|>": 100952, "<|LOC_656|>": 100953, "<|LOC_657|>": 100954, "<|LOC_658|>": 100955, "<|LOC_659|>": 100956, "<|LOC_660|>": 100957, "<|LOC_661|>": 100958, "<|LOC_662|>": 100959, "<|LOC_663|>": 100960, "<|LOC_664|>": 100961, "<|LOC_665|>": 100962, "<|LOC_666|>": 100963, "<|LOC_667|>": 100964, "<|LOC_668|>": 100965, "<|LOC_669|>": 100966, "<|LOC_670|>": 100967, "<|LOC_671|>": 100968, "<|LOC_672|>": 100969, "<|LOC_673|>": 100970, "<|LOC_674|>": 100971, "<|LOC_675|>": 100972, "<|LOC_676|>": 100973, "<|LOC_677|>": 100974, "<|LOC_678|>": 100975, "<|LOC_679|>": 100976, "<|LOC_680|>": 100977, "<|LOC_681|>": 100978, "<|LOC_682|>": 100979, "<|LOC_683|>": 100980, "<|LOC_684|>": 100981, "<|LOC_685|>": 100982, "<|LOC_686|>": 100983, "<|LOC_687|>": 100984, "<|LOC_688|>": 100985, "<|LOC_689|>": 100986, "<|LOC_690|>": 100987, "<|LOC_691|>": 100988, "<|LOC_692|>": 100989, "<|LOC_693|>": 100990, "<|LOC_694|>": 100991, "<|LOC_695|>": 100992, "<|LOC_696|>": 100993, "<|LOC_697|>": 100994, "<|LOC_698|>": 100995, "<|LOC_699|>": 100996, "<|LOC_700|>": 100997, "<|LOC_701|>": 100998, "<|LOC_702|>": 100999, "<|LOC_703|>": 101000, "<|LOC_704|>": 101001, "<|LOC_705|>": 101002, "<|LOC_706|>": 101003, "<|LOC_707|>": 101004, "<|LOC_708|>": 101005, "<|LOC_709|>": 101006, "<|LOC_710|>": 101007, "<|LOC_711|>": 101008, "<|LOC_712|>": 101009, "<|LOC_713|>": 101010, "<|LOC_714|>": 101011, "<|LOC_715|>": 101012, "<|LOC_716|>": 101013, "<|LOC_717|>": 101014, "<|LOC_718|>": 101015, "<|LOC_719|>": 101016, "<|LOC_720|>": 101017, "<|LOC_721|>": 101018, "<|LOC_722|>": 101019, "<|LOC_723|>": 101020, "<|LOC_724|>": 101021, "<|LOC_725|>": 101022, "<|LOC_726|>": 101023, "<|LOC_727|>": 101024, "<|LOC_728|>": 101025, "<|LOC_729|>": 101026, "<|LOC_730|>": 101027, "<|LOC_731|>": 101028, "<|LOC_732|>": 101029, "<|LOC_733|>": 101030, "<|LOC_734|>": 101031, "<|LOC_735|>": 101032, "<|LOC_736|>": 101033, "<|LOC_737|>": 101034, "<|LOC_738|>": 101035, "<|LOC_739|>": 101036, "<|LOC_740|>": 101037, "<|LOC_741|>": 101038, "<|LOC_742|>": 101039, "<|LOC_743|>": 101040, "<|LOC_744|>": 101041, "<|LOC_745|>": 101042, "<|LOC_746|>": 101043, "<|LOC_747|>": 101044, "<|LOC_748|>": 101045, "<|LOC_749|>": 101046, "<|LOC_750|>": 101047, "<|LOC_751|>": 101048, "<|LOC_752|>": 101049, "<|LOC_753|>": 101050, "<|LOC_754|>": 101051, "<|LOC_755|>": 101052, "<|LOC_756|>": 101053, "<|LOC_757|>": 101054, "<|LOC_758|>": 101055, "<|LOC_759|>": 101056, "<|LOC_760|>": 101057, "<|LOC_761|>": 101058, "<|LOC_762|>": 101059, "<|LOC_763|>": 101060, "<|LOC_764|>": 101061, "<|LOC_765|>": 101062, "<|LOC_766|>": 101063, "<|LOC_767|>": 101064, "<|LOC_768|>": 101065, "<|LOC_769|>": 101066, "<|LOC_770|>": 101067, "<|LOC_771|>": 101068, "<|LOC_772|>": 101069, "<|LOC_773|>": 101070, "<|LOC_774|>": 101071, "<|LOC_775|>": 101072, "<|LOC_776|>": 101073, "<|LOC_777|>": 101074, "<|LOC_778|>": 101075, "<|LOC_779|>": 101076, "<|LOC_780|>": 101077, "<|LOC_781|>": 101078, "<|LOC_782|>": 101079, "<|LOC_783|>": 101080, "<|LOC_784|>": 101081, "<|LOC_785|>": 101082, "<|LOC_786|>": 101083, "<|LOC_787|>": 101084, "<|LOC_788|>": 101085, "<|LOC_789|>": 101086, "<|LOC_790|>": 101087, "<|LOC_791|>": 101088, "<|LOC_792|>": 101089, "<|LOC_793|>": 101090, "<|LOC_794|>": 101091, "<|LOC_795|>": 101092, "<|LOC_796|>": 101093, "<|LOC_797|>": 101094, "<|LOC_798|>": 101095, "<|LOC_799|>": 101096, "<|LOC_800|>": 101097, "<|LOC_801|>": 101098, "<|LOC_802|>": 101099, "<|LOC_803|>": 101100, "<|LOC_804|>": 101101, "<|LOC_805|>": 101102, "<|LOC_806|>": 101103, "<|LOC_807|>": 101104, "<|LOC_808|>": 101105, "<|LOC_809|>": 101106, "<|LOC_810|>": 101107, "<|LOC_811|>": 101108, "<|LOC_812|>": 101109, "<|LOC_813|>": 101110, "<|LOC_814|>": 101111, "<|LOC_815|>": 101112, "<|LOC_816|>": 101113, "<|LOC_817|>": 101114, "<|LOC_818|>": 101115, "<|LOC_819|>": 101116, "<|LOC_820|>": 101117, "<|LOC_821|>": 101118, "<|LOC_822|>": 101119, "<|LOC_823|>": 101120, "<|LOC_824|>": 101121, "<|LOC_825|>": 101122, "<|LOC_826|>": 101123, "<|LOC_827|>": 101124, "<|LOC_828|>": 101125, "<|LOC_829|>": 101126, "<|LOC_830|>": 101127, "<|LOC_831|>": 101128, "<|LOC_832|>": 101129, "<|LOC_833|>": 101130, "<|LOC_834|>": 101131, "<|LOC_835|>": 101132, "<|LOC_836|>": 101133, "<|LOC_837|>": 101134, "<|LOC_838|>": 101135, "<|LOC_839|>": 101136, "<|LOC_840|>": 101137, "<|LOC_841|>": 101138, "<|LOC_842|>": 101139, "<|LOC_843|>": 101140, "<|LOC_844|>": 101141, "<|LOC_845|>": 101142, "<|LOC_846|>": 101143, "<|LOC_847|>": 101144, "<|LOC_848|>": 101145, "<|LOC_849|>": 101146, "<|LOC_850|>": 101147, "<|LOC_851|>": 101148, "<|LOC_852|>": 101149, "<|LOC_853|>": 101150, "<|LOC_854|>": 101151, "<|LOC_855|>": 101152, "<|LOC_856|>": 101153, "<|LOC_857|>": 101154, "<|LOC_858|>": 101155, "<|LOC_859|>": 101156, "<|LOC_860|>": 101157, "<|LOC_861|>": 101158, "<|LOC_862|>": 101159, "<|LOC_863|>": 101160, "<|LOC_864|>": 101161, "<|LOC_865|>": 101162, "<|LOC_866|>": 101163, "<|LOC_867|>": 101164, "<|LOC_868|>": 101165, "<|LOC_869|>": 101166, "<|LOC_870|>": 101167, "<|LOC_871|>": 101168, "<|LOC_872|>": 101169, "<|LOC_873|>": 101170, "<|LOC_874|>": 101171, "<|LOC_875|>": 101172, "<|LOC_876|>": 101173, "<|LOC_877|>": 101174, "<|LOC_878|>": 101175, "<|LOC_879|>": 101176, "<|LOC_880|>": 101177, "<|LOC_881|>": 101178, "<|LOC_882|>": 101179, "<|LOC_883|>": 101180, "<|LOC_884|>": 101181, "<|LOC_885|>": 101182, "<|LOC_886|>": 101183, "<|LOC_887|>": 101184, "<|LOC_888|>": 101185, "<|LOC_889|>": 101186, "<|LOC_890|>": 101187, "<|LOC_891|>": 101188, "<|LOC_892|>": 101189, "<|LOC_893|>": 101190, "<|LOC_894|>": 101191, "<|LOC_895|>": 101192, "<|LOC_896|>": 101193, "<|LOC_897|>": 101194, "<|LOC_898|>": 101195, "<|LOC_899|>": 101196, "<|LOC_900|>": 101197, "<|LOC_901|>": 101198, "<|LOC_902|>": 101199, "<|LOC_903|>": 101200, "<|LOC_904|>": 101201, "<|LOC_905|>": 101202, "<|LOC_906|>": 101203, "<|LOC_907|>": 101204, "<|LOC_908|>": 101205, "<|LOC_909|>": 101206, "<|LOC_910|>": 101207, "<|LOC_911|>": 101208, "<|LOC_912|>": 101209, "<|LOC_913|>": 101210, "<|LOC_914|>": 101211, "<|LOC_915|>": 101212, "<|LOC_916|>": 101213, "<|LOC_917|>": 101214, "<|LOC_918|>": 101215, "<|LOC_919|>": 101216, "<|LOC_920|>": 101217, "<|LOC_921|>": 101218, "<|LOC_922|>": 101219, "<|LOC_923|>": 101220, "<|LOC_924|>": 101221, "<|LOC_925|>": 101222, "<|LOC_926|>": 101223, "<|LOC_927|>": 101224, "<|LOC_928|>": 101225, "<|LOC_929|>": 101226, "<|LOC_930|>": 101227, "<|LOC_931|>": 101228, "<|LOC_932|>": 101229, "<|LOC_933|>": 101230, "<|LOC_934|>": 101231, "<|LOC_935|>": 101232, "<|LOC_936|>": 101233, "<|LOC_937|>": 101234, "<|LOC_938|>": 101235, "<|LOC_939|>": 101236, "<|LOC_940|>": 101237, "<|LOC_941|>": 101238, "<|LOC_942|>": 101239, "<|LOC_943|>": 101240, "<|LOC_944|>": 101241, "<|LOC_945|>": 101242, "<|LOC_946|>": 101243, "<|LOC_947|>": 101244, "<|LOC_948|>": 101245, "<|LOC_949|>": 101246, "<|LOC_950|>": 101247, "<|LOC_951|>": 101248, "<|LOC_952|>": 101249, "<|LOC_953|>": 101250, "<|LOC_954|>": 101251, "<|LOC_955|>": 101252, "<|LOC_956|>": 101253, "<|LOC_957|>": 101254, "<|LOC_958|>": 101255, "<|LOC_959|>": 101256, "<|LOC_960|>": 101257, "<|LOC_961|>": 101258, "<|LOC_962|>": 101259, "<|LOC_963|>": 101260, "<|LOC_964|>": 101261, "<|LOC_965|>": 101262, "<|LOC_966|>": 101263, "<|LOC_967|>": 101264, "<|LOC_968|>": 101265, "<|LOC_969|>": 101266, "<|LOC_970|>": 101267, "<|LOC_971|>": 101268, "<|LOC_972|>": 101269, "<|LOC_973|>": 101270, "<|LOC_974|>": 101271, "<|LOC_975|>": 101272, "<|LOC_976|>": 101273, "<|LOC_977|>": 101274, "<|LOC_978|>": 101275, "<|LOC_979|>": 101276, "<|LOC_980|>": 101277, "<|LOC_981|>": 101278, "<|LOC_982|>": 101279, "<|LOC_983|>": 101280, "<|LOC_984|>": 101281, "<|LOC_985|>": 101282, "<|LOC_986|>": 101283, "<|LOC_987|>": 101284, "<|LOC_988|>": 101285, "<|LOC_989|>": 101286, "<|LOC_990|>": 101287, "<|LOC_991|>": 101288, "<|LOC_992|>": 101289, "<|LOC_993|>": 101290, "<|LOC_994|>": 101291, "<|LOC_995|>": 101292, "<|LOC_996|>": 101293, "<|LOC_997|>": 101294, "<|LOC_998|>": 101295, "<|LOC_999|>": 101296, "<|LOC_1000|>": 101297, "<|LOC_BEGIN|>": 101298, "<|LOC_END|>": 101299, "<|LOC_SEP|>": 101300, "<|CROP_COL_SEP|>": 101301, "<|CROP_ROW_SEP|>": 101302, "<|IMAGE_SEP|>": 101303, "<|IMAGE_START|>": 101304, "<|IMAGE_END|>": 101305, "<|VIDEO_START|>": 101306, "<|VIDEO_END|>": 101307, "<|ASR_START|>": 101308, "<|ASR_END|>": 101309}
|
benchmark.jpg
ADDED
|
Git LFS Details
|
config.json
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Ernie4_5_VLMoeForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_ernie4_5_vl.Ernie4_5_VLMoEConfig",
|
| 7 |
+
"AutoModel": "modeling_ernie4_5_vl.Ernie4_5_VLMoeForConditionalGeneration",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_ernie4_5_vl.Ernie4_5_VLMoeForConditionalGeneration",
|
| 9 |
+
"AutoProcessor": "processing_ernie4_5_vl.Ernie4_5_VLProcessor",
|
| 10 |
+
"AutoImageProcessor": "processing_ernie4_5_vl.Ernie4_5_VLImageProcessor"
|
| 11 |
+
},
|
| 12 |
+
"pad_token_id": 0,
|
| 13 |
+
"bos_token_id": 1,
|
| 14 |
+
"eos_token_id": 2,
|
| 15 |
+
"torch_dtype": "bfloat16",
|
| 16 |
+
"hidden_act": "silu",
|
| 17 |
+
"hidden_size": 2560,
|
| 18 |
+
"intermediate_size": 12288,
|
| 19 |
+
"im_patch_id": 100295,
|
| 20 |
+
"image_start_token_id": 101304,
|
| 21 |
+
"image_end_token_id": 101305,
|
| 22 |
+
"video_start_token_id": 101306,
|
| 23 |
+
"video_end_token_id": 101307,
|
| 24 |
+
"max_position_embeddings": 131072,
|
| 25 |
+
"model_type": "ernie4_5_moe_vl",
|
| 26 |
+
"moe_capacity": [128, 128, 128],
|
| 27 |
+
"moe_gate": "topk",
|
| 28 |
+
"moe_intermediate_size": [1536, 512],
|
| 29 |
+
"moe_k": 6,
|
| 30 |
+
"moe_layer_end_index": [29, 28],
|
| 31 |
+
"moe_layer_interval": 1,
|
| 32 |
+
"moe_layer_start_index": [1, 1],
|
| 33 |
+
"moe_multimodal_dispatch_use_allgather": "v2-alltoall-unpad-text",
|
| 34 |
+
"moe_num_experts": [64, 64],
|
| 35 |
+
"moe_num_shared_experts": 2,
|
| 36 |
+
"moe_use_aux_free": true,
|
| 37 |
+
"num_attention_heads": 20,
|
| 38 |
+
"num_hidden_layers": 28,
|
| 39 |
+
"num_key_value_heads": 4,
|
| 40 |
+
"pixel_hidden_size": 1280,
|
| 41 |
+
"rms_norm_eps": 1e-05,
|
| 42 |
+
"rope_3d": true,
|
| 43 |
+
"rope_theta": 500000,
|
| 44 |
+
"spatial_conv_size": 2,
|
| 45 |
+
"temporal_conv_size": 2,
|
| 46 |
+
"vocab_size": 103424,
|
| 47 |
+
"tie_word_embeddings": true,
|
| 48 |
+
"use_cache": true,
|
| 49 |
+
"use_rmsnorm": true,
|
| 50 |
+
"use_bias": false,
|
| 51 |
+
"rope_scaling": {
|
| 52 |
+
"type": "default",
|
| 53 |
+
"mrope_section": [
|
| 54 |
+
22,
|
| 55 |
+
22,
|
| 56 |
+
20
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
"vision_config": {
|
| 60 |
+
"attn_implementation": "eager",
|
| 61 |
+
"depth": 32,
|
| 62 |
+
"embed_dim": 1280,
|
| 63 |
+
"hidden_act": "quick_gelu",
|
| 64 |
+
"hidden_size": 1280,
|
| 65 |
+
"in_channels": 3,
|
| 66 |
+
"in_chans": 3,
|
| 67 |
+
"mlp_ratio": 4,
|
| 68 |
+
"num_heads": 16,
|
| 69 |
+
"patch_size": 14,
|
| 70 |
+
"spatial_merge_size": 2,
|
| 71 |
+
"spatial_patch_size": 14,
|
| 72 |
+
"vit_first_fwd_bsz": 128,
|
| 73 |
+
"attn_sep": true
|
| 74 |
+
}
|
| 75 |
+
}
|
configuration_ernie4_5_vl.py
ADDED
|
@@ -0,0 +1,658 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 Baidu, Inc. All Rights Reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""Ernie model configuration"""
|
| 16 |
+
import copy
|
| 17 |
+
|
| 18 |
+
from typing import List, Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
from transformers import PretrainedConfig
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
__all__ = [
|
| 24 |
+
"ERNIE_PRETRAINED_INIT_CONFIGURATION",
|
| 25 |
+
"Ernie4_5_Config",
|
| 26 |
+
"Ernie4_5_MoEConfig",
|
| 27 |
+
"Ernie4_5_VLMoEConfig",
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class DFNRopeVisionTransformerConfig(PretrainedConfig):
|
| 32 |
+
"""
|
| 33 |
+
Configuration class for DFNRopeVisionTransformer model.
|
| 34 |
+
This class inherits from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 35 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
model_type = "DFNRope_vision_transformer"
|
| 39 |
+
base_model_tp_plan = {}
|
| 40 |
+
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
depth=32,
|
| 44 |
+
embed_dim=1280,
|
| 45 |
+
hidden_size=3584,
|
| 46 |
+
hidden_act="quick_gelu",
|
| 47 |
+
mlp_ratio=4,
|
| 48 |
+
num_heads=16,
|
| 49 |
+
in_channels=3,
|
| 50 |
+
patch_size=14,
|
| 51 |
+
spatial_merge_size=2,
|
| 52 |
+
attn_implementation="eager", # new added
|
| 53 |
+
pp_data_balance=False,
|
| 54 |
+
recompute=False,
|
| 55 |
+
attn_sep=False,
|
| 56 |
+
vit_first_fwd_bsz=128,
|
| 57 |
+
vit_num_recompute_layers=10000,
|
| 58 |
+
**kwargs,
|
| 59 |
+
):
|
| 60 |
+
"""
|
| 61 |
+
Initialize DFNRopeVisionTransformer model configuration with default or specified parameters.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
depth (int): Number of transformer layers in the model.
|
| 65 |
+
embed_dim (int): Dimensionality of the embedding layer.
|
| 66 |
+
hidden_size (int): Dimensionality of the feedforward network.
|
| 67 |
+
hidden_act (str): Activation function for the feedforward network.
|
| 68 |
+
mlp_ratio (float): Ratio between the number of input features and
|
| 69 |
+
the number of output features in the feedforward network.
|
| 70 |
+
num_heads (int): Number of attention heads in each attention layer.
|
| 71 |
+
in_channels (int): Number of channels in the input image.
|
| 72 |
+
patch_size (int):
|
| 73 |
+
Size of patches in the input image. Defaults to 14.
|
| 74 |
+
spatial_merge_size (int):
|
| 75 |
+
Spatial merge size for the spatial transformer module. Defaults to 2.
|
| 76 |
+
attn_implementation (str): Attention implementation type. Defaults to "eager".
|
| 77 |
+
pp_data_balance (bool): Whether to balance data during preprocessing. Defaults to False.
|
| 78 |
+
recompute (bool): Whether to use recompute. Defaults to False.
|
| 79 |
+
attn_sep (bool): Whether to separate attention computation into two stages. Defaults to False.
|
| 80 |
+
vit_first_fwd_bsz (int): First forward batch size for ViT. Defaults to 128.
|
| 81 |
+
vit_num_recompute_layers (int): Number of recomputed layers for ViT. Defaults to
|
| 82 |
+
"""
|
| 83 |
+
super().__init__(**kwargs)
|
| 84 |
+
|
| 85 |
+
self.depth = depth
|
| 86 |
+
self.embed_dim = embed_dim
|
| 87 |
+
self.hidden_size = hidden_size
|
| 88 |
+
self.hidden_act = hidden_act
|
| 89 |
+
self.mlp_ratio = mlp_ratio
|
| 90 |
+
self.num_heads = num_heads
|
| 91 |
+
self.in_channels = in_channels
|
| 92 |
+
self.patch_size = patch_size
|
| 93 |
+
self.spatial_merge_size = spatial_merge_size
|
| 94 |
+
self.attn_implementation = attn_implementation
|
| 95 |
+
self.pp_data_balance = pp_data_balance
|
| 96 |
+
self.recompute = recompute
|
| 97 |
+
self.attn_sep = attn_sep
|
| 98 |
+
self.vit_first_fwd_bsz = vit_first_fwd_bsz
|
| 99 |
+
self.vit_num_recompute_layers = vit_num_recompute_layers
|
| 100 |
+
|
| 101 |
+
def get(self, key, default=None):
|
| 102 |
+
"""get config value by key"""
|
| 103 |
+
if hasattr(self, key):
|
| 104 |
+
return getattr(self, key)
|
| 105 |
+
else:
|
| 106 |
+
return default
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
ERNIE_PRETRAINED_INIT_CONFIGURATION = {
|
| 110 |
+
"ernie/tiny-random-ernie": {
|
| 111 |
+
"hidden_size": 768,
|
| 112 |
+
"initializer_range": 0.02,
|
| 113 |
+
"intermediate_size": 11008,
|
| 114 |
+
"max_position_embeddings": 2048,
|
| 115 |
+
"model_type": "ernie",
|
| 116 |
+
"num_attention_heads": 2,
|
| 117 |
+
"num_hidden_layers": 2,
|
| 118 |
+
"rms_norm_eps": 1e-06,
|
| 119 |
+
"vocab_size": 32000,
|
| 120 |
+
"bos_token_id": 1,
|
| 121 |
+
"eos_token_id": 2,
|
| 122 |
+
"pad_token_id": 0,
|
| 123 |
+
"use_cache": False,
|
| 124 |
+
"recompute": False,
|
| 125 |
+
"use_flash_attn": True,
|
| 126 |
+
"use_pure_fp16": False,
|
| 127 |
+
},
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class Ernie4_5_Config(PretrainedConfig):
|
| 132 |
+
"""
|
| 133 |
+
Configuration class for ERNIE model.
|
| 134 |
+
|
| 135 |
+
This class stores the configuration of an ERNIE model, defining the model architecture.
|
| 136 |
+
It inherits from PretrainedConfig and can be used to control model outputs.
|
| 137 |
+
"""
|
| 138 |
+
|
| 139 |
+
model_type = "ernie"
|
| 140 |
+
pretrained_init_configuration = ERNIE_PRETRAINED_INIT_CONFIGURATION
|
| 141 |
+
base_model_tp_plan = {}
|
| 142 |
+
|
| 143 |
+
def __init__(
|
| 144 |
+
self,
|
| 145 |
+
vocab_size=32000,
|
| 146 |
+
hidden_size=768,
|
| 147 |
+
intermediate_size=11008,
|
| 148 |
+
max_position_embeddings=32768,
|
| 149 |
+
num_hidden_layers=2,
|
| 150 |
+
num_attention_heads=2,
|
| 151 |
+
initializer_range=0.02, # no use
|
| 152 |
+
rms_norm_eps=1e-6,
|
| 153 |
+
use_cache=False,
|
| 154 |
+
use_flash_attention=True,
|
| 155 |
+
use_sparse_flash_attn=True,
|
| 156 |
+
use_var_len_flash_attn=False,
|
| 157 |
+
recompute=False,
|
| 158 |
+
recompute_granularity="core_attn",
|
| 159 |
+
recompute_use_reentrant=False,
|
| 160 |
+
use_rmsnorm=True,
|
| 161 |
+
fuse_rms_norm=False,
|
| 162 |
+
fuse_ln=False,
|
| 163 |
+
pad_token_id=0,
|
| 164 |
+
bos_token_id=1,
|
| 165 |
+
eos_token_id=2,
|
| 166 |
+
fuse_swiglu=False,
|
| 167 |
+
use_bias=False,
|
| 168 |
+
rope_theta=10000,
|
| 169 |
+
fuse_rope=False,
|
| 170 |
+
fuse_softmax_mask=False,
|
| 171 |
+
use_fast_ln=False,
|
| 172 |
+
weight_share_add_bias=True,
|
| 173 |
+
fuse_linear=False,
|
| 174 |
+
max_sequence_length=None,
|
| 175 |
+
ignored_index=-100,
|
| 176 |
+
add_tail_layers=False,
|
| 177 |
+
use_recompute_lm_head=False,
|
| 178 |
+
use_recompute_loss_fn=False,
|
| 179 |
+
refined_recompute=dict(),
|
| 180 |
+
attention_probs_dropout_prob=0.0,
|
| 181 |
+
hidden_dropout_prob=0.0,
|
| 182 |
+
compression_ratio: float = 1.0,
|
| 183 |
+
num_key_value_heads=None,
|
| 184 |
+
use_sparse_head_and_loss_fn=False,
|
| 185 |
+
micro_batch_size=-1,
|
| 186 |
+
use_ep_comm_overlap=False,
|
| 187 |
+
use_fused_head_and_loss_fn=False,
|
| 188 |
+
token_balance_loss=False,
|
| 189 |
+
token_balance_seqlen=False, # calculated based on batchsize and seqlen
|
| 190 |
+
cachekv_quant: bool = False,
|
| 191 |
+
pp_seg_method="layer:ErnieDecoderLayer|EmptyLayer",
|
| 192 |
+
**kwargs,
|
| 193 |
+
):
|
| 194 |
+
"""
|
| 195 |
+
Initialize ERNIE model configuration with default or specified parameters.
|
| 196 |
+
|
| 197 |
+
Args:
|
| 198 |
+
vocab_size (int): Size of the vocabulary (number of unique tokens)
|
| 199 |
+
hidden_size (int): Dimensionality of the encoder layers and the pooler layer
|
| 200 |
+
intermediate_size (int): Dimensionality of the "intermediate" (feed-forward) layer
|
| 201 |
+
max_position_embeddings (int): Maximum sequence length the model can handle
|
| 202 |
+
num_hidden_layers (int): Number of hidden layers in the Transformer encoder
|
| 203 |
+
num_attention_heads (int): Number of attention heads for each attention layer
|
| 204 |
+
rms_norm_eps (float): The epsilon used by the RMS normalization layers
|
| 205 |
+
use_cache (bool): Whether to use caching for faster generation (decoding)
|
| 206 |
+
use_flash_attention (bool): Whether to use FlashAttention for optimized attention computation
|
| 207 |
+
use_sparse_flash_attn (bool): Whether to use sparse FlashAttention
|
| 208 |
+
use_var_len_flash_attn (bool): Whether to use variable-length FlashAttention
|
| 209 |
+
recompute (bool): Whether to use gradient checkpointing to save memory
|
| 210 |
+
recompute_granularity (str): Granularity of recomputation ("core_attn", "full", etc.)
|
| 211 |
+
recompute_use_reentrant (bool): Whether to use reentrant checkpointing
|
| 212 |
+
use_rmsnorm (bool): Whether to use RMSNorm instead of LayerNorm
|
| 213 |
+
fuse_rms_norm (bool): Whether to fuse RMSNorm operations for optimization
|
| 214 |
+
fuse_ln (bool): Whether to fuse LayerNorm operations
|
| 215 |
+
pad_token_id (int): Token ID used for padding sequences
|
| 216 |
+
bos_token_id (int): Token ID used for beginning-of-sequence
|
| 217 |
+
eos_token_id (int): Token ID used for end-of-sequence
|
| 218 |
+
fuse_swiglu (bool): Whether to fuse SwiGLU operations
|
| 219 |
+
use_bias (bool): Whether to use bias terms in linear layers
|
| 220 |
+
rope_theta (float): The base period of the RoPE embeddings
|
| 221 |
+
fuse_rope (bool): Whether to fuse RoPE operations
|
| 222 |
+
use_fast_ln (bool): Whether to use optimized LayerNorm implementation
|
| 223 |
+
weight_share_add_bias (bool): Whether to share bias weights in certain layers
|
| 224 |
+
fuse_linear (bool): Whether to fuse linear operations
|
| 225 |
+
max_sequence_length (int): Maximum sequence length for positional embeddings
|
| 226 |
+
ignored_index (int): Target value that is ignored during loss computation
|
| 227 |
+
add_tail_layers (bool): Whether to add additional layers at the end
|
| 228 |
+
use_recompute_lm_head (bool): Whether to recompute gradients for language model head
|
| 229 |
+
use_recompute_loss_fn (bool): Whether to recompute gradients for loss function
|
| 230 |
+
refined_recompute (dict): Dictionary specifying refined recomputation settings
|
| 231 |
+
attention_probs_dropout_prob (float): Dropout probability for attention weights
|
| 232 |
+
hidden_dropout_prob (float): Dropout probability for hidden layers
|
| 233 |
+
compression_ratio (float): Ratio for KV cache compression (1.0 = no compression)
|
| 234 |
+
num_key_value_heads (int): Number of key/value heads (for Grouped Query Attention)
|
| 235 |
+
use_sparse_head_and_loss_fn (bool): Whether to use sparse attention head and loss function
|
| 236 |
+
micro_batch_size (int): Size of micro batches (-1 for automatic)
|
| 237 |
+
use_ep_comm_overlap (bool): Whether to overlap communication with computation
|
| 238 |
+
use_fused_head_loss_fn (bool): Whether to use fused head and loss function
|
| 239 |
+
token_balance_loss (bool): Whether to balance loss by token count
|
| 240 |
+
token_balance_seqlen (bool): Whether to balance sequence lengths
|
| 241 |
+
cachekv_quant (bool): Whether to quantize key-value cache
|
| 242 |
+
pp_seg_method (str): Method for pipeline parallel segmentation
|
| 243 |
+
**kwargs: Additional keyword arguments passed to parent class
|
| 244 |
+
"""
|
| 245 |
+
|
| 246 |
+
# Set default for tied embeddings if not specified.
|
| 247 |
+
if "tie_word_embeddings" not in kwargs:
|
| 248 |
+
kwargs["tie_word_embeddings"] = False
|
| 249 |
+
super().__init__(
|
| 250 |
+
pad_token_id=pad_token_id,
|
| 251 |
+
bos_token_id=bos_token_id,
|
| 252 |
+
eos_token_id=eos_token_id,
|
| 253 |
+
**kwargs,
|
| 254 |
+
)
|
| 255 |
+
self.vocab_size = vocab_size
|
| 256 |
+
self.hidden_size = hidden_size
|
| 257 |
+
self.intermediate_size = intermediate_size
|
| 258 |
+
self.max_position_embeddings = max_position_embeddings
|
| 259 |
+
self.num_hidden_layers = num_hidden_layers
|
| 260 |
+
self.num_attention_heads = num_attention_heads
|
| 261 |
+
self.initializer_range = initializer_range
|
| 262 |
+
self.rms_norm_eps = rms_norm_eps
|
| 263 |
+
self.use_cache = use_cache
|
| 264 |
+
self.recompute = recompute
|
| 265 |
+
self.recompute_granularity = recompute_granularity
|
| 266 |
+
self.use_flash_attention = use_flash_attention
|
| 267 |
+
self.use_sparse_flash_attn = use_sparse_flash_attn
|
| 268 |
+
self.recompute_use_reentrant = recompute_use_reentrant
|
| 269 |
+
self.use_var_len_flash_attn = use_var_len_flash_attn
|
| 270 |
+
self.pad_token_id = pad_token_id
|
| 271 |
+
self.bos_token_id = bos_token_id
|
| 272 |
+
self.eos_token_id = eos_token_id
|
| 273 |
+
self.fuse_swiglu = fuse_swiglu
|
| 274 |
+
self.fuse_rms_norm = fuse_rms_norm
|
| 275 |
+
self.fuse_ln = fuse_ln
|
| 276 |
+
self.use_rmsnorm = use_rmsnorm
|
| 277 |
+
self.micro_batch_size = micro_batch_size
|
| 278 |
+
|
| 279 |
+
self.max_sequence_length = max_sequence_length
|
| 280 |
+
self.use_bias = use_bias
|
| 281 |
+
self.weight_share_add_bias = weight_share_add_bias
|
| 282 |
+
self.rope_theta = rope_theta
|
| 283 |
+
self.fuse_rope = fuse_rope
|
| 284 |
+
self.fuse_softmax_mask = fuse_softmax_mask
|
| 285 |
+
self.use_fast_ln = use_fast_ln
|
| 286 |
+
|
| 287 |
+
self.fuse_linear = fuse_linear
|
| 288 |
+
self.ignored_index = ignored_index
|
| 289 |
+
self.add_tail_layers = add_tail_layers
|
| 290 |
+
self.use_recompute_lm_head = use_recompute_lm_head
|
| 291 |
+
self.use_recompute_loss_fn = use_recompute_loss_fn
|
| 292 |
+
|
| 293 |
+
self.refined_recompute = refined_recompute
|
| 294 |
+
self.skip_recompute_ops = dict()
|
| 295 |
+
"""
|
| 296 |
+
`refined_recompute` is a dictionary that specifies fine-grained gradient recomputation settings,
|
| 297 |
+
which currently only takes effect in Pipeline Parallel (PP) mode.
|
| 298 |
+
|
| 299 |
+
In PP mode, this dictionary populates `self.skip_recompute_ops` with the following structure:
|
| 300 |
+
- Key (`op_name`): The operation name to configure, with possible values:
|
| 301 |
+
* "mlp_row_ln" - MLP row-wise layer normalization
|
| 302 |
+
* "flash_attn" - Flash attention operation
|
| 303 |
+
* "attention_row_ln" - Attention row-wise layer normalization
|
| 304 |
+
* "attention_column_ln" - Attention column-wise layer normalization
|
| 305 |
+
* "mlp_column_ln" - MLP column-wise layer normalization
|
| 306 |
+
|
| 307 |
+
- Value (`skip_num`): Controls how many times to skip recomputation:
|
| 308 |
+
* 0: Never skip recomputation (minimum memory usage)
|
| 309 |
+
* -1: Always skip recomputation (maximum memory usage)
|
| 310 |
+
* [0,1,...,12]: Skip recomputation for specified number of times
|
| 311 |
+
* ≥12: Equivalent to -1 (always skip recomputation)
|
| 312 |
+
|
| 313 |
+
This allows precise control over memory/computation tradeoffs for different operations.
|
| 314 |
+
"""
|
| 315 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 316 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 317 |
+
self.compression_ratio = compression_ratio
|
| 318 |
+
self.num_key_value_heads = num_key_value_heads
|
| 319 |
+
self.use_sparse_head_and_loss_fn = use_sparse_head_and_loss_fn
|
| 320 |
+
self.use_ep_comm_overlap = use_ep_comm_overlap
|
| 321 |
+
self.use_fused_head_and_loss_fn = use_fused_head_and_loss_fn
|
| 322 |
+
self.token_balance_loss = token_balance_loss
|
| 323 |
+
self.token_balance_seqlen = token_balance_seqlen
|
| 324 |
+
self.cachekv_quant = cachekv_quant
|
| 325 |
+
self.pp_seg_method = pp_seg_method
|
| 326 |
+
|
| 327 |
+
def get(self, key, default=None):
|
| 328 |
+
"""get config value by key"""
|
| 329 |
+
if hasattr(self, key):
|
| 330 |
+
return getattr(self, key)
|
| 331 |
+
else:
|
| 332 |
+
return default
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
class Ernie4_5_MoEConfig(Ernie4_5_Config):
|
| 336 |
+
r"""
|
| 337 |
+
Configuration class for ErnieMoE model architecture.
|
| 338 |
+
|
| 339 |
+
This class stores the configuration for a [`~ErnieModel`] and is used to instantiate
|
| 340 |
+
an ErnieMoE model according to the specified arguments. Inherits from [`PretrainedConfig`]
|
| 341 |
+
and can control model outputs.
|
| 342 |
+
|
| 343 |
+
Attributes:
|
| 344 |
+
Inherits all attributes from Ernie4_5_Config and adds MoE-specific configurations.
|
| 345 |
+
"""
|
| 346 |
+
|
| 347 |
+
model_type = "ernie"
|
| 348 |
+
attribute_map = {
|
| 349 |
+
"n_positions": "max_position_embeddings",
|
| 350 |
+
"n_embd": "hidden_size",
|
| 351 |
+
"n_layer": "num_hidden_layers",
|
| 352 |
+
"n_head": "num_attention_heads",
|
| 353 |
+
"n_inner": "intermediate_size",
|
| 354 |
+
"activation_function": "hidden_act",
|
| 355 |
+
}
|
| 356 |
+
pretrained_init_configuration = ERNIE_PRETRAINED_INIT_CONFIGURATION
|
| 357 |
+
base_model_tp_plan = {}
|
| 358 |
+
|
| 359 |
+
def __init__(
|
| 360 |
+
self,
|
| 361 |
+
moe_num_experts: Union[int, list] = 0,
|
| 362 |
+
use_recompute_moe=False,
|
| 363 |
+
moe_capacity=(),
|
| 364 |
+
moe_layer_interval=2,
|
| 365 |
+
moe_layer_start_index=0,
|
| 366 |
+
moe_layer_end_index=-1,
|
| 367 |
+
moe_aux_loss_lambda=1e-2,
|
| 368 |
+
moe_z_loss_lambda=1e-4,
|
| 369 |
+
moe_orthogonal_loss_lambda=1e-2,
|
| 370 |
+
sinkhorn_2gate=True,
|
| 371 |
+
sinkhorn_temp=3e-2,
|
| 372 |
+
global_aux_loss=False,
|
| 373 |
+
moe_dropout_prob=0.0,
|
| 374 |
+
moe_group="world",
|
| 375 |
+
moe_gate="top2",
|
| 376 |
+
moe_intermediate_size: Union[int, list] = 0,
|
| 377 |
+
moe_num_shared_experts: int = 0,
|
| 378 |
+
moe_reverse_token_drop: bool = False,
|
| 379 |
+
moe_gate_act: str = "softmax",
|
| 380 |
+
moe_norm_gate_logits=True,
|
| 381 |
+
moe_all_to_all_dropout: float = 0.0,
|
| 382 |
+
moe_k=2,
|
| 383 |
+
moe_use_aux_free: bool = False,
|
| 384 |
+
# `moe_group_experts` must be used with `moe_use_hard_gate=True`
|
| 385 |
+
moe_group_experts: bool = False,
|
| 386 |
+
moe_group_orthogonal_loss: bool = True,
|
| 387 |
+
enable_delay_scale_loss: bool = True,
|
| 388 |
+
num_acc_steps: int = 1,
|
| 389 |
+
fuse_gate_detach_matmul: bool = False,
|
| 390 |
+
dpo_config=None,
|
| 391 |
+
moe_multimodal_dispatch_use_allgather: str = "",
|
| 392 |
+
moe_use_hard_gate=False,
|
| 393 |
+
moe_dense_experts_token_type_id=3,
|
| 394 |
+
**kwargs,
|
| 395 |
+
):
|
| 396 |
+
"""
|
| 397 |
+
Initialize ErnieMoE configuration with MoE-specific parameters.
|
| 398 |
+
|
| 399 |
+
Args:
|
| 400 |
+
moe_num_experts: Number of experts in MoE layers
|
| 401 |
+
use_recompute_moe: Whether to use recomputation for MoE layers
|
| 402 |
+
moe_capacity: Capacity configuration for MoE layers
|
| 403 |
+
moe_layer_interval: Interval between MoE layers
|
| 404 |
+
moe_layer_start_index: Starting layer index for MoE
|
| 405 |
+
moe_layer_end_index: Ending layer index for MoE (-1 means last layer)
|
| 406 |
+
moe_aux_loss_lambda: Weight for auxiliary loss
|
| 407 |
+
moe_z_loss_lambda: Weight for z-loss
|
| 408 |
+
moe_orthogonal_loss_lambda: Weight for orthogonal loss
|
| 409 |
+
sinkhorn_2gate: Whether to use sinkhorn 2-gate routing
|
| 410 |
+
sinkhorn_temp: Temperature for sinkhorn routing
|
| 411 |
+
global_aux_loss: Whether to use global auxiliary loss
|
| 412 |
+
moe_dropout_prob: Dropout probability for MoE layers
|
| 413 |
+
moe_group: Group configuration for MoE experts
|
| 414 |
+
moe_gate: Type of gating mechanism ('top2', etc.)
|
| 415 |
+
moe_intermediate_size: Intermediate size for MoE layers
|
| 416 |
+
moe_num_shared_experts: Number of shared experts
|
| 417 |
+
moe_reverse_token_drop: Whether to use reverse token dropping
|
| 418 |
+
moe_gate_act: Activation function for gating
|
| 419 |
+
moe_norm_gate_logits: Whether to normalize gate logits
|
| 420 |
+
moe_all_to_all_dropout: Dropout for all-to-all communication
|
| 421 |
+
moe_k: Number of experts to route to
|
| 422 |
+
moe_use_aux_free: Whether to use auxiliary-free routing
|
| 423 |
+
moe_group_experts: Whether to group experts (requires hard gating)
|
| 424 |
+
moe_group_orthogonal_loss: Whether to use group orthogonal loss
|
| 425 |
+
enable_delay_scale_loss: Whether to enable delayed loss scaling
|
| 426 |
+
num_acc_steps: Number of accumulation steps
|
| 427 |
+
fuse_gate_detach_matmul: Whether to fuse gate detach matmul
|
| 428 |
+
**kwargs: Additional base model configuration parameters
|
| 429 |
+
|
| 430 |
+
Note:
|
| 431 |
+
When use_recompute_moe is True, recompute_granularity will be changed to full_attn.
|
| 432 |
+
"""
|
| 433 |
+
|
| 434 |
+
if use_recompute_moe:
|
| 435 |
+
logger.warning(
|
| 436 |
+
"set `use_recompute_moe`=True, disabling `recompute_granularity=full`, change to full_attn."
|
| 437 |
+
)
|
| 438 |
+
if kwargs["recompute"] and kwargs["recompute_granularity"] == "full":
|
| 439 |
+
kwargs["recompute_granularity"] = "full_attn"
|
| 440 |
+
super().__init__(**kwargs)
|
| 441 |
+
|
| 442 |
+
self.moe_num_experts = moe_num_experts
|
| 443 |
+
self.use_recompute_moe = use_recompute_moe
|
| 444 |
+
self.moe_capacity = moe_capacity
|
| 445 |
+
self.moe_aux_loss_lambda = moe_aux_loss_lambda
|
| 446 |
+
self.moe_z_loss_lambda = moe_z_loss_lambda
|
| 447 |
+
self.moe_orthogonal_loss_lambda = moe_orthogonal_loss_lambda
|
| 448 |
+
self.global_aux_loss = global_aux_loss
|
| 449 |
+
self.sinkhorn_2gate = sinkhorn_2gate
|
| 450 |
+
self.sinkhorn_temp = sinkhorn_temp
|
| 451 |
+
self.moe_layer_interval = moe_layer_interval
|
| 452 |
+
self.moe_dropout_prob = moe_dropout_prob
|
| 453 |
+
self.moe_group = moe_group
|
| 454 |
+
self.moe_gate = moe_gate
|
| 455 |
+
self.moe_intermediate_size = moe_intermediate_size
|
| 456 |
+
self.moe_num_shared_experts = moe_num_shared_experts
|
| 457 |
+
self.moe_reverse_token_drop = moe_reverse_token_drop
|
| 458 |
+
self.moe_k = moe_k
|
| 459 |
+
self.moe_all_to_all_dropout = moe_all_to_all_dropout
|
| 460 |
+
self.moe_group_experts = moe_group_experts
|
| 461 |
+
self.moe_group_orthogonal_loss = moe_group_orthogonal_loss
|
| 462 |
+
self.enable_delay_scale_loss = enable_delay_scale_loss
|
| 463 |
+
self.num_acc_steps = num_acc_steps
|
| 464 |
+
self.moe_layer_start_index = moe_layer_start_index
|
| 465 |
+
self.moe_layer_end_index = (
|
| 466 |
+
self.num_hidden_layers - 1
|
| 467 |
+
if moe_layer_end_index == -1
|
| 468 |
+
else moe_layer_end_index
|
| 469 |
+
)
|
| 470 |
+
self.moe_gate_act = moe_gate_act
|
| 471 |
+
self.moe_norm_gate_logits = moe_norm_gate_logits
|
| 472 |
+
self.moe_use_aux_free = moe_use_aux_free
|
| 473 |
+
self.fuse_gate_detach_matmul = fuse_gate_detach_matmul
|
| 474 |
+
self.dpo_config = dpo_config
|
| 475 |
+
self.moe_multimodal_dispatch_use_allgather = (
|
| 476 |
+
moe_multimodal_dispatch_use_allgather
|
| 477 |
+
)
|
| 478 |
+
self.moe_use_hard_gate = moe_use_hard_gate
|
| 479 |
+
self.moe_dense_experts_token_type_id = moe_dense_experts_token_type_id
|
| 480 |
+
|
| 481 |
+
@property
|
| 482 |
+
def multimodel_experts(self) -> bool:
|
| 483 |
+
"""multimodel experts."""
|
| 484 |
+
return (
|
| 485 |
+
isinstance(self.moe_num_experts, (tuple, list))
|
| 486 |
+
and len(self.moe_num_experts) > 1
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
@property
|
| 490 |
+
def use_moe(self) -> bool:
|
| 491 |
+
"""
|
| 492 |
+
Check if model is using MoE architecture.
|
| 493 |
+
|
| 494 |
+
Returns:
|
| 495 |
+
bool: True if moe_num_experts > 0, False otherwise
|
| 496 |
+
"""
|
| 497 |
+
return self.moe_num_experts > 0
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
class Ernie4_5_VLMoEConfig(Ernie4_5_MoEConfig):
|
| 501 |
+
"""
|
| 502 |
+
This is the configuration class to store the configuration of a [`~ErnieModel`]. It is used to instantiate an Ernie
|
| 503 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 504 |
+
defaults will yield a similar configuration to that of the Ernie-7B.
|
| 505 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 506 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 507 |
+
Args:
|
| 508 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 509 |
+
Vocabulary size of the Ernie model. Defines the number of different tokens that can be represented by the
|
| 510 |
+
`inputs_ids` passed when calling [`~ErnieModel`] or [`~TFErnieModel`].
|
| 511 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 512 |
+
Dimension of the hidden representations.
|
| 513 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 514 |
+
Dimension of the MLP representations.
|
| 515 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 516 |
+
Number of hidden layers in the Transformer encoder.
|
| 517 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 518 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 519 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 520 |
+
The non-linear activation function (function or string) in the decoder.
|
| 521 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 522 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 523 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 524 |
+
The epsilon used by the rms normalization layers.
|
| 525 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 526 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 527 |
+
relevant if `config.is_decoder=True`.
|
| 528 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
| 529 |
+
Whether to tie weight embeddings
|
| 530 |
+
"""
|
| 531 |
+
|
| 532 |
+
model_type = "ernie4_5_moe_vl"
|
| 533 |
+
attribute_map = {
|
| 534 |
+
"n_positions": "max_position_embeddings",
|
| 535 |
+
"n_embd": "hidden_size",
|
| 536 |
+
"n_layer": "num_hidden_layers",
|
| 537 |
+
"n_head": "num_attention_heads",
|
| 538 |
+
"n_inner": "intermediate_size",
|
| 539 |
+
"activation_function": "hidden_act",
|
| 540 |
+
}
|
| 541 |
+
base_model_tp_plan = {
|
| 542 |
+
"model.layers.*.self_attn.q_proj": "colwise_rep",
|
| 543 |
+
"model.layers.*.self_attn.k_proj": "colwise_rep",
|
| 544 |
+
"model.layers.*.self_attn.v_proj": "colwise_rep",
|
| 545 |
+
"model.layers.*.self_attn.o_proj": "rowwise_rep",
|
| 546 |
+
"model.layers.*.mlp.experts.*.gate_proj": "colwise",
|
| 547 |
+
"model.layers.*.mlp.experts.*.up_proj": "colwise",
|
| 548 |
+
"model.layers.*.mlp.experts.*.down_proj": "rowwise",
|
| 549 |
+
"model.layers.*.mlp_text.experts.*.gate_proj": "colwise",
|
| 550 |
+
"model.layers.*.mlp_text.experts.*.up_proj": "colwise",
|
| 551 |
+
"model.layers.*.mlp_text.experts.*.down_proj": "rowwise",
|
| 552 |
+
"model.layers.*.mlp.gate_proj": "colwise",
|
| 553 |
+
"model.layers.*.mlp.up_proj": "colwise",
|
| 554 |
+
"model.layers.*.mlp.down_proj": "rowwise"
|
| 555 |
+
}
|
| 556 |
+
|
| 557 |
+
def __init__(
|
| 558 |
+
self,
|
| 559 |
+
vision_config=None,
|
| 560 |
+
im_patch_id=None,
|
| 561 |
+
image_start_token_id=None,
|
| 562 |
+
image_end_token_id=None,
|
| 563 |
+
video_start_token_id=None,
|
| 564 |
+
video_end_token_id=None,
|
| 565 |
+
pixel_hidden_size=None,
|
| 566 |
+
modality_detach=False,
|
| 567 |
+
temporal_conv_size=2,
|
| 568 |
+
spatial_conv_size=2,
|
| 569 |
+
mm_vocab_size=0, # vocab for mm specialtokens
|
| 570 |
+
max_text_id=None,
|
| 571 |
+
use_temporal_conv=True,
|
| 572 |
+
moe_use_size_all2all=False,
|
| 573 |
+
moe_num_attn_experts=False,
|
| 574 |
+
moe_dense_experts_token_type_id: int = 3,
|
| 575 |
+
moe_use_hard_gate: bool = True,
|
| 576 |
+
moe_fuse_experts: bool = False,
|
| 577 |
+
moe_use_token_type_bias: bool = False,
|
| 578 |
+
disable_ffn_model_parallel=False,
|
| 579 |
+
fuse_attn_ffn=True,
|
| 580 |
+
rope_3d=True,
|
| 581 |
+
freq_allocation=20,
|
| 582 |
+
using_precision_check=False,
|
| 583 |
+
use_recompute_resampler=False,
|
| 584 |
+
resampler_fuse_rms_norm=False,
|
| 585 |
+
moe_layer_feed_fake_token=False,
|
| 586 |
+
tensor_parallel_degree=1,
|
| 587 |
+
**kwargs,
|
| 588 |
+
):
|
| 589 |
+
super().__init__(**kwargs)
|
| 590 |
+
if isinstance(vision_config, dict):
|
| 591 |
+
self.vision_config = DFNRopeVisionTransformerConfig(**vision_config)
|
| 592 |
+
else:
|
| 593 |
+
self.vision_config = DFNRopeVisionTransformerConfig()
|
| 594 |
+
self.im_patch_id = im_patch_id
|
| 595 |
+
self.image_start_token_id = image_start_token_id
|
| 596 |
+
self.image_end_token_id = image_end_token_id
|
| 597 |
+
self.video_start_token_id = video_start_token_id
|
| 598 |
+
self.video_end_token_id = video_end_token_id
|
| 599 |
+
self.pixel_hidden_size = pixel_hidden_size
|
| 600 |
+
self.modality_detach = modality_detach
|
| 601 |
+
self.temporal_conv_size = temporal_conv_size
|
| 602 |
+
self.spatial_conv_size = spatial_conv_size
|
| 603 |
+
self.mm_vocab_size = mm_vocab_size
|
| 604 |
+
self.max_text_id = max_text_id
|
| 605 |
+
self.use_temporal_conv = use_temporal_conv
|
| 606 |
+
|
| 607 |
+
self.moe_use_size_all2all = moe_use_size_all2all
|
| 608 |
+
self.moe_num_attn_experts = moe_num_attn_experts
|
| 609 |
+
self.moe_dense_experts_token_type_id = moe_dense_experts_token_type_id
|
| 610 |
+
self.moe_use_hard_gate = moe_use_hard_gate
|
| 611 |
+
self.moe_fuse_experts = moe_fuse_experts
|
| 612 |
+
self.moe_use_token_type_bias = moe_use_token_type_bias
|
| 613 |
+
self.disable_ffn_model_parallel = disable_ffn_model_parallel
|
| 614 |
+
|
| 615 |
+
self.fuse_attn_ffn = fuse_attn_ffn
|
| 616 |
+
self.rope_3d = rope_3d
|
| 617 |
+
self.freq_allocation = freq_allocation
|
| 618 |
+
self.using_precision_check = using_precision_check
|
| 619 |
+
self.use_recompute_resampler = use_recompute_resampler
|
| 620 |
+
self.resampler_fuse_rms_norm = resampler_fuse_rms_norm
|
| 621 |
+
self.moe_layer_feed_fake_token = moe_layer_feed_fake_token
|
| 622 |
+
|
| 623 |
+
self.tensor_parallel_degree = tensor_parallel_degree
|
| 624 |
+
|
| 625 |
+
@property
|
| 626 |
+
def multimodel_experts(self) -> bool:
|
| 627 |
+
"""Check if model is using more than 1 multimodel experts."""
|
| 628 |
+
return (
|
| 629 |
+
isinstance(self.moe_num_experts, (tuple, list))
|
| 630 |
+
and len(self.moe_num_experts) > 1
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
@property
|
| 634 |
+
def use_moe(self) -> bool:
|
| 635 |
+
"""
|
| 636 |
+
Check if model is using MoE architecture.
|
| 637 |
+
|
| 638 |
+
Returns:
|
| 639 |
+
bool: True if moe_num_experts > 0, False otherwise
|
| 640 |
+
"""
|
| 641 |
+
return (
|
| 642 |
+
sum(self.moe_num_experts) > 0
|
| 643 |
+
if self.multimodel_experts
|
| 644 |
+
else self.moe_num_experts > 0
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
def to_dict(self, saving_file=False):
|
| 648 |
+
"""to_dict"""
|
| 649 |
+
output = copy.deepcopy(self.__dict__)
|
| 650 |
+
if self.vision_config:
|
| 651 |
+
output["vision_config"] = (
|
| 652 |
+
self.vision_config.to_dict()
|
| 653 |
+
if isinstance(self.vision_config, (DFNRopeVisionTransformerConfig))
|
| 654 |
+
else self.vision_config
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
output["model_type"] = self.__class__.model_type
|
| 658 |
+
return output
|
generation_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"top_p": 0.95,
|
| 3 |
+
"temperature": 0.6,
|
| 4 |
+
"repetition_penalty": 1.0,
|
| 5 |
+
"frequency_penalty": 0.0,
|
| 6 |
+
"presence_penalty": 0.0,
|
| 7 |
+
"pad_token_id": 0,
|
| 8 |
+
"bos_token_id": 1,
|
| 9 |
+
"eos_token_id": 2
|
| 10 |
+
}
|
model-00001-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:316f0b2880ffe623cdf44e8bf43bce413be22a03a45fba55b244bc49e2a27f52
|
| 3 |
+
size 2499162944
|
model-00002-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:32d436640f2cec018117b56adb9a091be5ea7ddaecf29120cd13232269207d0d
|
| 3 |
+
size 329478088
|
model-00003-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d37f32a9ad65ef2b65047a1719005800d915693d922f4d33ab03d07411d87a59
|
| 3 |
+
size 2093279192
|
model-00004-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c4587c88f9355a6978e7fc851542ac9cec5d60f6706baa14576e0165f5a754a
|
| 3 |
+
size 2093279192
|
model-00005-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e3fc5934d2d7269bc5ea8c8b220cf733137bb4d94b5e0ada96e73800ab561563
|
| 3 |
+
size 2093279192
|
model-00006-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae1750a29fb2e600de00fc9e0bfd1183646f05f6ba8bf0195bde2a163540f298
|
| 3 |
+
size 2093279192
|
model-00007-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f358e455e5acc240fd67b36efda92fad1bc9c621984dacfb83c4e4c1257e6692
|
| 3 |
+
size 2093279192
|
model-00008-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e3b2e9e9a471a3aabc579e062f29d0098bfd6c50d9715c90146126c4d695b9de
|
| 3 |
+
size 2093279192
|
model-00009-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:08edfc746286cdfd9ee72cb98befabca0133b9bd79589be992f5cf5b395f188f
|
| 3 |
+
size 2093279192
|
model-00010-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38fb50d70257dce6d3c12ac4891503b93b296a02ca6e9192ce4ff18ea79e4988
|
| 3 |
+
size 2093279192
|
model-00011-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:17d2c7f537587210b45d2ea50b837905c684f826fc174ba6273ed11cf9a2ec35
|
| 3 |
+
size 2093279192
|
model-00012-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:15b8002d4747b545c625afb416e3b92dc0c05daea2b4a8ac51ba0c8956ac52a6
|
| 3 |
+
size 2093279592
|
model-00013-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ffd7d02c5d3c1cc752a1a9da9d608da9a621bf2a448ec8b81b7ad20d95eaec72
|
| 3 |
+
size 2093279592
|
model-00014-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b8b7f8cc43cb6b1d494abe33248ab53d3afe998a7e137bb6c25e87fe9974e026
|
| 3 |
+
size 2093279592
|
model-00015-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13c11d6a49354d3905539aed6eef20caa574271888d810efb6479f11339d54bb
|
| 3 |
+
size 2093279592
|
model-00016-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fc87eec9268c8e5c64027943858a8dfa91066b561dbbb9bf338fb928dce601d3
|
| 3 |
+
size 2093279592
|
model-00017-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63c747d1354fc0edad49e3a91d29499d1c0419805879db18393489bccdda0667
|
| 3 |
+
size 2093279592
|
model-00018-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e51248c89f68460b146da8c19c95e0561fb6743d77662ea3724b953543016ba8
|
| 3 |
+
size 2093279592
|
model-00019-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:46a6708194e6fed64a8ce4440fa714e7ef7dfc690ef56f7af6dd3804935dd2a9
|
| 3 |
+
size 2093279592
|
model-00020-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:58d17fd0fd65fe844c6cd4d0b2184831dc532087b6f3696133415356fd7e1e3c
|
| 3 |
+
size 2093279592
|
model-00021-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad368d5f6a6b39679bb9961717336fa6591678d3cd8227c03c6e02c008bcd9d4
|
| 3 |
+
size 2093279592
|
model-00022-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca23d84bda0e885d7ee694c57e310dfeec7545e746ea4747ee7f59e3ccb93dc8
|
| 3 |
+
size 2093279592
|
model-00023-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f67cc38459941db3c23cf503c5a2970669a7752097ac7b527652d9aa412344be
|
| 3 |
+
size 2093279592
|
model-00024-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:339043048bb39c2817803e329f84a53f63f3feba287c67949d6d12fa8ea79d77
|
| 3 |
+
size 2093279592
|
model-00025-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfc32f1945d424c0ae7a5b10dc1c69394cf142b864ed3a7c98fc9a18ab3d0794
|
| 3 |
+
size 2093279592
|
model-00026-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c168877f3c174052b359376c12c899913d8b52c11b07482eacd7bdc4a73d9099
|
| 3 |
+
size 2093279592
|
model-00027-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9feec6d2b7c327e751542eb73b8f3b07febc9d20785911c61e7b83fb5dfefd8c
|
| 3 |
+
size 2093279592
|
model-00028-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:98a94b94e5e3c00d5b3371390997a5a1363becec23fa049ecd08bec51cd1e06c
|
| 3 |
+
size 2093279592
|
model-00029-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:435d544797ccbe15396824bd1d4cbea8621a1115e5850eb06dc25b597be71342
|
| 3 |
+
size 2093279592
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_ernie4_5_vl.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": {
|
| 3 |
+
"height": 224,
|
| 4 |
+
"width": 224
|
| 5 |
+
},
|
| 6 |
+
"do_center_crop": false,
|
| 7 |
+
"do_convert_rgb": true,
|
| 8 |
+
"do_normalize": true,
|
| 9 |
+
"do_rescale": true,
|
| 10 |
+
"do_resize": true,
|
| 11 |
+
"image_mean": [
|
| 12 |
+
0.48145466,
|
| 13 |
+
0.4578275,
|
| 14 |
+
0.40821073
|
| 15 |
+
],
|
| 16 |
+
"image_std": [
|
| 17 |
+
0.26862954,
|
| 18 |
+
0.26130258,
|
| 19 |
+
0.27577711
|
| 20 |
+
],
|
| 21 |
+
"resample": 3,
|
| 22 |
+
"rescale_factor": 0.00392156862745098,
|
| 23 |
+
"size": {
|
| 24 |
+
"height": 224,
|
| 25 |
+
"width": 224
|
| 26 |
+
},
|
| 27 |
+
"min_pixels": 3136,
|
| 28 |
+
"max_pixels": 4816896
|
| 29 |
+
}
|
processing_ernie4_5_vl.py
ADDED
|
@@ -0,0 +1,1821 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 Baidu, Inc. All Rights Reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""Tokenization classes and Image processor class, Processor class for Ernie_45T_VL."""
|
| 16 |
+
|
| 17 |
+
import copy
|
| 18 |
+
import io
|
| 19 |
+
import os
|
| 20 |
+
import math
|
| 21 |
+
import random
|
| 22 |
+
import requests
|
| 23 |
+
import base64
|
| 24 |
+
import datetime
|
| 25 |
+
import hashlib
|
| 26 |
+
import threading
|
| 27 |
+
import uuid
|
| 28 |
+
import decord
|
| 29 |
+
from shutil import copyfile
|
| 30 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 31 |
+
|
| 32 |
+
import numpy as np
|
| 33 |
+
import torch
|
| 34 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 35 |
+
from PIL.ExifTags import TAGS
|
| 36 |
+
from collections import defaultdict
|
| 37 |
+
from pathlib import Path
|
| 38 |
+
from tempfile import NamedTemporaryFile as ntf
|
| 39 |
+
|
| 40 |
+
import sentencepiece as spm
|
| 41 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 42 |
+
from transformers.tokenization_utils_base import (
|
| 43 |
+
PaddingStrategy,
|
| 44 |
+
TextInput,
|
| 45 |
+
)
|
| 46 |
+
from transformers.utils import TensorType, logging
|
| 47 |
+
from transformers.video_utils import VideoInput
|
| 48 |
+
from transformers.processing_utils import ProcessorMixin
|
| 49 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 50 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 51 |
+
from transformers.image_transforms import (
|
| 52 |
+
convert_to_rgb,
|
| 53 |
+
normalize,
|
| 54 |
+
rescale,
|
| 55 |
+
resize,
|
| 56 |
+
to_channel_dimension_format,
|
| 57 |
+
)
|
| 58 |
+
from transformers.image_utils import (
|
| 59 |
+
OPENAI_CLIP_MEAN,
|
| 60 |
+
OPENAI_CLIP_STD,
|
| 61 |
+
ChannelDimension,
|
| 62 |
+
ImageInput,
|
| 63 |
+
PILImageResampling,
|
| 64 |
+
get_image_size,
|
| 65 |
+
infer_channel_dimension_format,
|
| 66 |
+
is_valid_image,
|
| 67 |
+
make_list_of_images,
|
| 68 |
+
to_numpy_array,
|
| 69 |
+
valid_images,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
logger = logging.get_logger(__name__)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class Ernie4_5_VLTokenizer(PreTrainedTokenizer):
|
| 76 |
+
"""
|
| 77 |
+
Ernie4_5_VLTokenizer
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
vocab_files_names = {
|
| 81 |
+
"vocab_file": "tokenizer.model",
|
| 82 |
+
}
|
| 83 |
+
# Model input names expected by the tokenizer
|
| 84 |
+
model_input_names = ["input_ids", "position_ids", "attention_mask", "labels"]
|
| 85 |
+
# Padding side (where to add padding tokens)
|
| 86 |
+
padding_side = "right"
|
| 87 |
+
|
| 88 |
+
def __init__(
|
| 89 |
+
self,
|
| 90 |
+
vocab_file,
|
| 91 |
+
bos_token="<s>",
|
| 92 |
+
cls_token="<cls>",
|
| 93 |
+
eos_token="</s>",
|
| 94 |
+
mask_token="<mask:0>",
|
| 95 |
+
pad_token="<pad>",
|
| 96 |
+
sep_token="<sep>",
|
| 97 |
+
unk_token="<unk>",
|
| 98 |
+
additional_special_tokens=None,
|
| 99 |
+
**kwargs,
|
| 100 |
+
):
|
| 101 |
+
"""
|
| 102 |
+
Initialize the Ernie4_5_VLTokenizer
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
vocab_file (str): Path to the tokenizer vocabulary model.
|
| 106 |
+
bos_token (str, optional): The beginning of sequence token. Defaults to `"<s>"`.
|
| 107 |
+
cls_token (str, optional): The classifier token. Defaults to `"<cls>"`.
|
| 108 |
+
eos_token (str, optional): The end of sequence token. Defaults to `"</s>"`.
|
| 109 |
+
mask_token (str, optional): The masking token. Defaults to `"<mask:0>"`.
|
| 110 |
+
pad_token (str, optional): The padding token. Defaults to `"<pad>"`.
|
| 111 |
+
sep_token (str, optional): The separation token. Defaults to `"<sep>"`.
|
| 112 |
+
unk_token (str, optional): The unknown tokens symbol. Defaults to `"<unk>"`.
|
| 113 |
+
additional_special_tokens (List[str], optional): Additional special tokens to use.
|
| 114 |
+
Defaults to `["<mask:1>", "<mask:7>"]`.
|
| 115 |
+
**kwargs (dict): Additional keyword arguments passed along to the superclass.
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
# Store vocabulary file path
|
| 119 |
+
self.vocab_file = vocab_file
|
| 120 |
+
# Initialize SentencePiece processor
|
| 121 |
+
self.sp_model = spm.SentencePieceProcessor()
|
| 122 |
+
# Load the vocabulary model
|
| 123 |
+
self.sp_model.Load(vocab_file)
|
| 124 |
+
|
| 125 |
+
# Set default additional special tokens if none provided
|
| 126 |
+
if additional_special_tokens is None:
|
| 127 |
+
additional_special_tokens = ["<mask:1>", "<mask:7>"]
|
| 128 |
+
super().__init__(
|
| 129 |
+
bos_token=bos_token,
|
| 130 |
+
cls_token=cls_token,
|
| 131 |
+
eos_token=eos_token,
|
| 132 |
+
mask_token=mask_token,
|
| 133 |
+
pad_token=pad_token,
|
| 134 |
+
sep_token=sep_token,
|
| 135 |
+
unk_token=unk_token,
|
| 136 |
+
additional_special_tokens=additional_special_tokens,
|
| 137 |
+
**kwargs,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
@property
|
| 141 |
+
def space_token(self):
|
| 142 |
+
"""Return the space token"""
|
| 143 |
+
return "<mask:1>"
|
| 144 |
+
|
| 145 |
+
@property
|
| 146 |
+
def space_token_id(self):
|
| 147 |
+
"""Return the ID of the space token"""
|
| 148 |
+
return self.sp_model.piece_to_id("<mask:1>")
|
| 149 |
+
|
| 150 |
+
@property
|
| 151 |
+
def gend_token(self):
|
| 152 |
+
"""Return the gender token"""
|
| 153 |
+
return "<mask:7>"
|
| 154 |
+
|
| 155 |
+
@property
|
| 156 |
+
def gend_token_id(self):
|
| 157 |
+
"""Return the ID of the gender token"""
|
| 158 |
+
return self.sp_model.piece_to_id("<mask:7>")
|
| 159 |
+
|
| 160 |
+
@property
|
| 161 |
+
def im_start_id(self):
|
| 162 |
+
"""Return the ID of the image start token"""
|
| 163 |
+
return self.sp_model.piece_to_id("<|im_start|>")
|
| 164 |
+
|
| 165 |
+
@property
|
| 166 |
+
def im_end_id(self):
|
| 167 |
+
"""Return the ID of the image end token"""
|
| 168 |
+
return self.sp_model.piece_to_id("<|im_end|>")
|
| 169 |
+
|
| 170 |
+
@property
|
| 171 |
+
def vocab_size(self):
|
| 172 |
+
"""Return the size of the vocabulary"""
|
| 173 |
+
return self.sp_model.vocab_size()
|
| 174 |
+
|
| 175 |
+
def get_vocab(self):
|
| 176 |
+
"""Return the vocabulary as a dictionary mapping tokens to IDs"""
|
| 177 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 178 |
+
vocab.update(self.added_tokens_encoder)
|
| 179 |
+
return vocab
|
| 180 |
+
|
| 181 |
+
def _tokenize(self, text):
|
| 182 |
+
"""Tokenize the input text into pieces"""
|
| 183 |
+
return self.sp_model.encode_as_pieces(text)
|
| 184 |
+
|
| 185 |
+
def _convert_token_to_id(self, token):
|
| 186 |
+
"""Convert a token to its corresponding ID"""
|
| 187 |
+
return self.sp_model.piece_to_id(token)
|
| 188 |
+
|
| 189 |
+
def _convert_id_to_token(self, id):
|
| 190 |
+
"""Convert an ID to its corresponding token"""
|
| 191 |
+
return self.sp_model.id_to_piece(id)
|
| 192 |
+
|
| 193 |
+
def convert_tokens_to_string(self, tokens):
|
| 194 |
+
"""Convert a sequence of tokens back to a string"""
|
| 195 |
+
current_sub_tokens = []
|
| 196 |
+
out_string = ""
|
| 197 |
+
|
| 198 |
+
for token in tokens:
|
| 199 |
+
# Handle special tokens differently
|
| 200 |
+
if token in self.all_special_tokens:
|
| 201 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 202 |
+
current_sub_tokens = []
|
| 203 |
+
else:
|
| 204 |
+
current_sub_tokens.append(token)
|
| 205 |
+
|
| 206 |
+
# Add any remaining sub-tokens
|
| 207 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 208 |
+
return out_string
|
| 209 |
+
|
| 210 |
+
def prepare_for_model(self, *args, **kwargs):
|
| 211 |
+
"""Prepare the tokenized inputs for the model"""
|
| 212 |
+
# Remove add_special_tokens if present (not supported)
|
| 213 |
+
if "add_special_tokens" in kwargs:
|
| 214 |
+
kwargs.pop("add_special_tokens")
|
| 215 |
+
return super().prepare_for_model(*args, **kwargs)
|
| 216 |
+
|
| 217 |
+
def save_vocabulary(
|
| 218 |
+
self, save_directory, filename_prefix: Optional[str] = None
|
| 219 |
+
) -> Tuple[str]:
|
| 220 |
+
"""
|
| 221 |
+
Save the vocabulary and special tokens file to a directory.
|
| 222 |
+
|
| 223 |
+
Args:
|
| 224 |
+
save_directory (`str`): The directory to save the vocabulary to
|
| 225 |
+
filename_prefix (`str`, optional): Prefix to add to the filename
|
| 226 |
+
|
| 227 |
+
Returns:
|
| 228 |
+
`Tuple(str)`: Paths to the saved files
|
| 229 |
+
"""
|
| 230 |
+
if not os.path.isdir(save_directory):
|
| 231 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 232 |
+
return
|
| 233 |
+
|
| 234 |
+
# Construct output vocabulary file path
|
| 235 |
+
out_vocab_file = os.path.join(
|
| 236 |
+
save_directory,
|
| 237 |
+
(filename_prefix + "-" if filename_prefix else "")
|
| 238 |
+
+ self.vocab_files_names["vocab_file"],
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# Copy or create vocabulary file
|
| 242 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
| 243 |
+
out_vocab_file
|
| 244 |
+
) and os.path.isfile(self.vocab_file):
|
| 245 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 246 |
+
elif not os.path.isfile(self.vocab_file):
|
| 247 |
+
with open(out_vocab_file, "wb") as fi:
|
| 248 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 249 |
+
fi.write(content_spiece_model)
|
| 250 |
+
|
| 251 |
+
return (out_vocab_file,)
|
| 252 |
+
|
| 253 |
+
def _decode(self, *args, **kwargs):
|
| 254 |
+
"""Decode token_id back to text"""
|
| 255 |
+
# Remove some parameters that aren't used
|
| 256 |
+
kwargs.pop("clean_up_tokenization_spaces", None)
|
| 257 |
+
kwargs.pop("spaces_between_special_tokens", None)
|
| 258 |
+
|
| 259 |
+
# Call parent decode method with specific parameters
|
| 260 |
+
return super()._decode(
|
| 261 |
+
*args,
|
| 262 |
+
**kwargs,
|
| 263 |
+
clean_up_tokenization_spaces=False,
|
| 264 |
+
spaces_between_special_tokens=False,
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
def _pad(
|
| 268 |
+
self,
|
| 269 |
+
encoded_inputs: Dict,
|
| 270 |
+
max_length: Optional[int] = None,
|
| 271 |
+
padding_strategy=PaddingStrategy.DO_NOT_PAD,
|
| 272 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 273 |
+
return_attention_mask: Optional[bool] = None,
|
| 274 |
+
**kwargs
|
| 275 |
+
) -> dict:
|
| 276 |
+
"""Pad the encoded inputs to the specified length"""
|
| 277 |
+
if return_attention_mask is None:
|
| 278 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
| 279 |
+
if return_attention_mask:
|
| 280 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
| 281 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
| 282 |
+
max_length = len(required_input)
|
| 283 |
+
|
| 284 |
+
# Adjust max_length if needed for multiple of padding
|
| 285 |
+
if (
|
| 286 |
+
max_length is not None
|
| 287 |
+
and pad_to_multiple_of is not None
|
| 288 |
+
and (max_length % pad_to_multiple_of != 0)
|
| 289 |
+
):
|
| 290 |
+
max_length = (
|
| 291 |
+
(max_length // pad_to_multiple_of) + 1
|
| 292 |
+
) * pad_to_multiple_of
|
| 293 |
+
|
| 294 |
+
# Check if padding is needed
|
| 295 |
+
needs_to_be_padded = (
|
| 296 |
+
padding_strategy != PaddingStrategy.DO_NOT_PAD
|
| 297 |
+
and len(required_input) != max_length
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
# Handle attention mask if present
|
| 301 |
+
if (
|
| 302 |
+
"attention_mask" in encoded_inputs
|
| 303 |
+
and encoded_inputs["attention_mask"] is not None
|
| 304 |
+
):
|
| 305 |
+
attention_mask = encoded_inputs.pop("attention_mask")
|
| 306 |
+
if isinstance(attention_mask, torch.Tensor):
|
| 307 |
+
attention_mask = attention_mask.numpy()
|
| 308 |
+
elif isinstance(attention_mask, list):
|
| 309 |
+
attention_mask = np.array(attention_mask)
|
| 310 |
+
elif not isinstance(attention_mask, np.ndarray):
|
| 311 |
+
raise ValueError(
|
| 312 |
+
f"Unexpected type {type(attention_mask)} of attention_mask, "
|
| 313 |
+
)
|
| 314 |
+
else:
|
| 315 |
+
# Create default attention mask if none provided
|
| 316 |
+
attention_mask = np.tril(
|
| 317 |
+
np.ones((len(required_input), len(required_input)), dtype=np.int64)
|
| 318 |
+
)
|
| 319 |
+
attention_mask = np.expand_dims(attention_mask, axis=0)
|
| 320 |
+
|
| 321 |
+
# Perform padding if needed
|
| 322 |
+
if needs_to_be_padded:
|
| 323 |
+
difference = max_length - len(required_input)
|
| 324 |
+
if self.padding_side == "right":
|
| 325 |
+
if attention_mask.ndim == 1:
|
| 326 |
+
pad_width = [(0, difference)]
|
| 327 |
+
else:
|
| 328 |
+
pad_width = [(0, 0), (0, difference), (0, difference)]
|
| 329 |
+
elif self.padding_side == "left":
|
| 330 |
+
if attention_mask.ndim == 1:
|
| 331 |
+
pad_width = [(difference, 0)]
|
| 332 |
+
else:
|
| 333 |
+
pad_width = [(0, 0), (difference, 0), (difference, 0)]
|
| 334 |
+
else:
|
| 335 |
+
raise ValueError(
|
| 336 |
+
"Invalid padding strategy:" + str(self.padding_side)
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
attention_mask = np.pad(
|
| 340 |
+
attention_mask,
|
| 341 |
+
pad_width=pad_width,
|
| 342 |
+
mode="constant",
|
| 343 |
+
constant_values=0,
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
# Call parent padding method
|
| 347 |
+
encoded_inputs = super()._pad(
|
| 348 |
+
encoded_inputs,
|
| 349 |
+
max_length,
|
| 350 |
+
padding_strategy=padding_strategy,
|
| 351 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 352 |
+
return_attention_mask=False,
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
# Add attention mask back if needed
|
| 356 |
+
if return_attention_mask:
|
| 357 |
+
encoded_inputs["attention_mask"] = attention_mask.tolist()
|
| 358 |
+
|
| 359 |
+
return encoded_inputs
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def round_by_factor(number: int, factor: int) -> int:
|
| 363 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 364 |
+
return round(number / factor) * factor
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
def ceil_by_factor(number: int, factor: int) -> int:
|
| 368 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
| 369 |
+
return math.ceil(number / factor) * factor
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
def floor_by_factor(number: int, factor: int) -> int:
|
| 373 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
| 374 |
+
return math.floor(number / factor) * factor
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
def smart_resize(
|
| 378 |
+
height: int,
|
| 379 |
+
width: int,
|
| 380 |
+
factor: int = 28,
|
| 381 |
+
min_pixels: int = 4 * 28 * 28,
|
| 382 |
+
max_pixels: int = 16384 * 28 * 28,
|
| 383 |
+
):
|
| 384 |
+
"""
|
| 385 |
+
Rescales the image so that the following conditions are met:
|
| 386 |
+
|
| 387 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 388 |
+
|
| 389 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 390 |
+
|
| 391 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 392 |
+
"""
|
| 393 |
+
MAX_RATIO = 200
|
| 394 |
+
if max(height, width) / min(height, width) > MAX_RATIO:
|
| 395 |
+
if height > width:
|
| 396 |
+
new_width = max(factor, round_by_factor(width, factor))
|
| 397 |
+
new_height = floor_by_factor(new_width * MAX_RATIO, factor)
|
| 398 |
+
else:
|
| 399 |
+
new_height = max(factor, round_by_factor(height, factor))
|
| 400 |
+
new_width = floor_by_factor(new_height * MAX_RATIO, factor)
|
| 401 |
+
|
| 402 |
+
logger.info(
|
| 403 |
+
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)},\
|
| 404 |
+
resize to {max(new_height, new_width) / min(new_height, new_width)}"
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
height = new_height
|
| 408 |
+
width = new_width
|
| 409 |
+
|
| 410 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
| 411 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
| 412 |
+
if h_bar * w_bar > max_pixels:
|
| 413 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 414 |
+
h_bar = floor_by_factor(height / beta, factor)
|
| 415 |
+
w_bar = floor_by_factor(width / beta, factor)
|
| 416 |
+
elif h_bar * w_bar < min_pixels:
|
| 417 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 418 |
+
h_bar = ceil_by_factor(height * beta, factor)
|
| 419 |
+
w_bar = ceil_by_factor(width * beta, factor)
|
| 420 |
+
|
| 421 |
+
if min_pixels > h_bar * w_bar or h_bar * w_bar > max_pixels:
|
| 422 |
+
raise ValueError(f"encounter invalid h_bar: {h_bar}, w_bar: {w_bar}")
|
| 423 |
+
|
| 424 |
+
return h_bar, w_bar
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
def is_scaled_image(image: np.ndarray) -> bool:
|
| 428 |
+
"""
|
| 429 |
+
Checks to see whether the pixel values have already been rescaled to [0, 1].
|
| 430 |
+
"""
|
| 431 |
+
if image.dtype == np.uint8:
|
| 432 |
+
return False
|
| 433 |
+
|
| 434 |
+
# It's possible the image has pixel values in [0, 255] but is of floating type
|
| 435 |
+
return np.min(image) >= 0 and np.max(image) <= 1
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
| 439 |
+
"""
|
| 440 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
| 441 |
+
|
| 442 |
+
Args:
|
| 443 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
| 444 |
+
The input image.
|
| 445 |
+
|
| 446 |
+
Returns:
|
| 447 |
+
list: A list of images.
|
| 448 |
+
"""
|
| 449 |
+
if (
|
| 450 |
+
isinstance(images, (list, tuple))
|
| 451 |
+
and isinstance(images[0], (list, tuple))
|
| 452 |
+
and is_valid_image(images[0][0])
|
| 453 |
+
):
|
| 454 |
+
return [img for img_list in images for img in img_list]
|
| 455 |
+
|
| 456 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
| 457 |
+
return images
|
| 458 |
+
|
| 459 |
+
elif is_valid_image(images):
|
| 460 |
+
return [images]
|
| 461 |
+
|
| 462 |
+
raise ValueError(f"Could not make batched images from {images}")
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
# Copied from transformers.models.llava_next_video.image_processing_llava_next_video.make_batched_videos
|
| 466 |
+
def make_batched_videos(videos) -> List[VideoInput]:
|
| 467 |
+
"""dummy"""
|
| 468 |
+
if (
|
| 469 |
+
isinstance(videos, (list, tuple))
|
| 470 |
+
and isinstance(videos[0], (list, tuple))
|
| 471 |
+
and is_valid_image(videos[0][0])
|
| 472 |
+
):
|
| 473 |
+
return videos
|
| 474 |
+
|
| 475 |
+
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
|
| 476 |
+
if isinstance(videos[0], Image.Image):
|
| 477 |
+
return [videos]
|
| 478 |
+
elif len(videos[0].shape) == 4:
|
| 479 |
+
return [list(video) for video in videos]
|
| 480 |
+
|
| 481 |
+
elif is_valid_image(videos) and len(videos.shape) == 4:
|
| 482 |
+
return [list(videos)]
|
| 483 |
+
|
| 484 |
+
raise ValueError(f"Could not make batched video from {videos}")
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
class Ernie4_5_VLImageProcessor(BaseImageProcessor):
|
| 488 |
+
r"""
|
| 489 |
+
Constructs a adaptive image processor that dynamically resizes images based on the original images.
|
| 490 |
+
|
| 491 |
+
Args:
|
| 492 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 493 |
+
Whether to resize the image's (height, width) dimensions.
|
| 494 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
| 495 |
+
Resampling filter to use when resizing the image.
|
| 496 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 497 |
+
Whether to rescale the image by the specified scale `rescale_factor`.
|
| 498 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 499 |
+
Scale factor to use if rescaling the image.
|
| 500 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 501 |
+
Whether to normalize the image.
|
| 502 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
| 503 |
+
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 504 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
| 505 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel
|
| 506 |
+
in the image.
|
| 507 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 508 |
+
Whether to convert the image to RGB.
|
| 509 |
+
min_pixels (`int`, *optional*, defaults to `56 * 56`):
|
| 510 |
+
The min pixels of the image to resize the image.
|
| 511 |
+
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
|
| 512 |
+
The max pixels of the image to resize the image.
|
| 513 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 514 |
+
The spacial patch size of the vision encoder.
|
| 515 |
+
temporal_conv_size (`int`, *optional*, defaults to 2):
|
| 516 |
+
The temporal conv size in resampler.
|
| 517 |
+
merge_size (`int`, *optional*, defaults to 2):
|
| 518 |
+
The merge size of the vision encoder to llm encoder.
|
| 519 |
+
"""
|
| 520 |
+
|
| 521 |
+
model_input_names = [
|
| 522 |
+
"pixel_values",
|
| 523 |
+
"image_grid_thw",
|
| 524 |
+
"pixel_values_videos",
|
| 525 |
+
"video_grid_thw",
|
| 526 |
+
]
|
| 527 |
+
|
| 528 |
+
def __init__(
|
| 529 |
+
self,
|
| 530 |
+
do_resize: bool = True,
|
| 531 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 532 |
+
do_rescale: bool = True,
|
| 533 |
+
rescale_factor: Union[float, List[float]] = 1 / 255,
|
| 534 |
+
do_normalize: bool = True,
|
| 535 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 536 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 537 |
+
do_convert_rgb: bool = True,
|
| 538 |
+
min_pixels: int = 56 * 56,
|
| 539 |
+
max_pixels: int = 28 * 28 * 1280,
|
| 540 |
+
patch_size: int = 14,
|
| 541 |
+
temporal_conv_size: int = 2,
|
| 542 |
+
merge_size: int = 2,
|
| 543 |
+
**kwargs,
|
| 544 |
+
) -> None:
|
| 545 |
+
"""init"""
|
| 546 |
+
super().__init__(**kwargs)
|
| 547 |
+
self.do_resize = do_resize
|
| 548 |
+
self.resample = resample
|
| 549 |
+
self.do_rescale = do_rescale
|
| 550 |
+
self.rescale_factor = rescale_factor
|
| 551 |
+
self.do_normalize = do_normalize
|
| 552 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
| 553 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
| 554 |
+
self.min_pixels = min_pixels
|
| 555 |
+
self.max_pixels = max_pixels
|
| 556 |
+
self.patch_size = patch_size
|
| 557 |
+
self.temporal_conv_size = temporal_conv_size
|
| 558 |
+
self.merge_size = merge_size
|
| 559 |
+
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
|
| 560 |
+
self.do_convert_rgb = do_convert_rgb
|
| 561 |
+
|
| 562 |
+
def set_pixels(self, min_pixels=None, max_pixels=None, msg=""):
|
| 563 |
+
"""set_pixels"""
|
| 564 |
+
if min_pixels is not None:
|
| 565 |
+
assert (
|
| 566 |
+
isinstance(min_pixels, int) and min_pixels >= 0
|
| 567 |
+
), "min_pixels must be positive int"
|
| 568 |
+
logger.info(
|
| 569 |
+
f"{msg} Ernie4_5_VLImageProcessor set min_pixels = {min_pixels}"
|
| 570 |
+
)
|
| 571 |
+
self.min_pixels = min_pixels
|
| 572 |
+
self.size["min_pixels"] = int(min_pixels)
|
| 573 |
+
if max_pixels is not None:
|
| 574 |
+
assert (
|
| 575 |
+
isinstance(max_pixels, int) and max_pixels > 0
|
| 576 |
+
), "max_pixels must be positive int"
|
| 577 |
+
logger.info(
|
| 578 |
+
f"{msg} Ernie4_5_VLImageProcessor set max_pixels = {max_pixels}"
|
| 579 |
+
)
|
| 580 |
+
self.max_pixels = max_pixels
|
| 581 |
+
self.size["max_pixels"] = int(max_pixels)
|
| 582 |
+
|
| 583 |
+
def get_smarted_resize(self, height, width, min_pixels=None, max_pixels=None):
|
| 584 |
+
"""dummy"""
|
| 585 |
+
actual_min_pixels = min_pixels if min_pixels is not None else self.min_pixels
|
| 586 |
+
actual_max_pixels = max_pixels if max_pixels is not None else self.max_pixels
|
| 587 |
+
resized_height, resized_width = smart_resize(
|
| 588 |
+
height,
|
| 589 |
+
width,
|
| 590 |
+
factor=self.patch_size * self.merge_size,
|
| 591 |
+
min_pixels=actual_min_pixels,
|
| 592 |
+
max_pixels=actual_max_pixels,
|
| 593 |
+
)
|
| 594 |
+
return (resized_height, resized_width), (
|
| 595 |
+
resized_height // self.patch_size,
|
| 596 |
+
resized_width // self.patch_size,
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
def _preprocess(
|
| 600 |
+
self,
|
| 601 |
+
images: Union[ImageInput, VideoInput],
|
| 602 |
+
do_resize: bool = True,
|
| 603 |
+
resample: PILImageResampling = None,
|
| 604 |
+
do_rescale: bool = True,
|
| 605 |
+
rescale_factor: float = 1 / 255,
|
| 606 |
+
do_normalize: bool = True,
|
| 607 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 608 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 609 |
+
do_convert_rgb: bool = False,
|
| 610 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 611 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 612 |
+
predetermined_grid_thw=None,
|
| 613 |
+
):
|
| 614 |
+
"""
|
| 615 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
| 616 |
+
|
| 617 |
+
Args:
|
| 618 |
+
images (`ImageInput` or `VideoInput`):
|
| 619 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255.
|
| 620 |
+
If pixel values range from 0 to 1, set `do_rescale=False`.
|
| 621 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 622 |
+
Whether to resize the image.
|
| 623 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
| 624 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
| 625 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 626 |
+
Whether to rescale the image.
|
| 627 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 628 |
+
Scale factor to use if rescaling the image.
|
| 629 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 630 |
+
Whether to normalize the image.
|
| 631 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 632 |
+
Mean to use if normalizing the image.
|
| 633 |
+
Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 634 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 635 |
+
Standard deviation to use if normalizing the image.
|
| 636 |
+
Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 637 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 638 |
+
Whether to convert the image to RGB.
|
| 639 |
+
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 640 |
+
The channel dimension format for the output image. Can be one of:
|
| 641 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 642 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 643 |
+
- Unset: Use the channel dimension format of the input image.
|
| 644 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 645 |
+
The channel dimension format for the input image. Can be one of:
|
| 646 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 647 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 648 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 649 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 650 |
+
"""
|
| 651 |
+
images = make_list_of_images(images)
|
| 652 |
+
|
| 653 |
+
if do_convert_rgb:
|
| 654 |
+
images = [convert_to_rgb(image) for image in images]
|
| 655 |
+
|
| 656 |
+
# All transformations expect numpy arrays.
|
| 657 |
+
images = [to_numpy_array(image) for image in images]
|
| 658 |
+
|
| 659 |
+
if is_scaled_image(images[0]) and do_rescale:
|
| 660 |
+
logger.warning_once(
|
| 661 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 662 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 663 |
+
)
|
| 664 |
+
if input_data_format is None:
|
| 665 |
+
# We assume that all images have the same channel dimension format.
|
| 666 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 667 |
+
|
| 668 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
| 669 |
+
resized_height, resized_width = height, width
|
| 670 |
+
processed_images = []
|
| 671 |
+
|
| 672 |
+
if predetermined_grid_thw is not None:
|
| 673 |
+
assert len(predetermined_grid_thw) == len(
|
| 674 |
+
images
|
| 675 |
+
), f"len(predetermined_grid_thw) {len(predetermined_grid_thw)} == len(images) {len(images)}"
|
| 676 |
+
|
| 677 |
+
for img_idx, image in enumerate(images):
|
| 678 |
+
if do_resize:
|
| 679 |
+
if predetermined_grid_thw is not None:
|
| 680 |
+
(resized_height, resized_width) = predetermined_grid_thw[img_idx]
|
| 681 |
+
resized_height *= self.patch_size
|
| 682 |
+
resized_width *= self.patch_size
|
| 683 |
+
else:
|
| 684 |
+
resized_height, resized_width = smart_resize(
|
| 685 |
+
height,
|
| 686 |
+
width,
|
| 687 |
+
factor=self.patch_size * self.merge_size,
|
| 688 |
+
min_pixels=self.min_pixels,
|
| 689 |
+
max_pixels=self.max_pixels,
|
| 690 |
+
)
|
| 691 |
+
|
| 692 |
+
image = resize(
|
| 693 |
+
image,
|
| 694 |
+
size=(resized_height, resized_width),
|
| 695 |
+
resample=resample,
|
| 696 |
+
data_format=input_data_format,
|
| 697 |
+
)
|
| 698 |
+
if do_rescale:
|
| 699 |
+
image = rescale(
|
| 700 |
+
image, scale=rescale_factor, data_format=input_data_format
|
| 701 |
+
)
|
| 702 |
+
|
| 703 |
+
if do_normalize:
|
| 704 |
+
image = normalize(
|
| 705 |
+
image=image,
|
| 706 |
+
mean=image_mean,
|
| 707 |
+
std=image_std,
|
| 708 |
+
data_format=input_data_format,
|
| 709 |
+
)
|
| 710 |
+
|
| 711 |
+
image = to_channel_dimension_format(
|
| 712 |
+
image, data_format, input_channel_dim=input_data_format
|
| 713 |
+
) # [C, H, W]
|
| 714 |
+
|
| 715 |
+
processed_images.append(image)
|
| 716 |
+
patches = np.array(processed_images)
|
| 717 |
+
if data_format == ChannelDimension.LAST:
|
| 718 |
+
patches = patches.transpose([0, 3, 1, 2])
|
| 719 |
+
|
| 720 |
+
channel = patches.shape[1] # [time, C, H, W]
|
| 721 |
+
grid_t = patches.shape[0]
|
| 722 |
+
grid_h, grid_w = (
|
| 723 |
+
resized_height // self.patch_size,
|
| 724 |
+
resized_width // self.patch_size,
|
| 725 |
+
)
|
| 726 |
+
patches = patches.reshape(
|
| 727 |
+
[
|
| 728 |
+
grid_t,
|
| 729 |
+
channel,
|
| 730 |
+
grid_h // self.merge_size,
|
| 731 |
+
self.merge_size,
|
| 732 |
+
self.patch_size,
|
| 733 |
+
grid_w // self.merge_size,
|
| 734 |
+
self.merge_size,
|
| 735 |
+
self.patch_size,
|
| 736 |
+
]
|
| 737 |
+
)
|
| 738 |
+
# [grid_t, grid_h/merge_size, grid_w/merge_size, merge_size, merge_size, C, psz, psz]
|
| 739 |
+
patches = patches.transpose([0, 2, 5, 3, 6, 1, 4, 7])
|
| 740 |
+
|
| 741 |
+
flatten_patches = patches.reshape(
|
| 742 |
+
[grid_t * grid_h * grid_w, channel * self.patch_size * self.patch_size]
|
| 743 |
+
) # [grid_t * grid_h * grid_w, C * psz * psz]
|
| 744 |
+
|
| 745 |
+
return flatten_patches, (grid_t, grid_h, grid_w)
|
| 746 |
+
|
| 747 |
+
def preprocess(
|
| 748 |
+
self,
|
| 749 |
+
images: ImageInput,
|
| 750 |
+
videos: VideoInput = None,
|
| 751 |
+
do_resize: bool = True,
|
| 752 |
+
size: Optional[Union[int, List[int]]] = None,
|
| 753 |
+
resample: PILImageResampling = None,
|
| 754 |
+
do_rescale: bool = True,
|
| 755 |
+
rescale_factor: float = 1 / 255,
|
| 756 |
+
do_normalize: bool = True,
|
| 757 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 758 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 759 |
+
do_convert_rgb: bool = False,
|
| 760 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 761 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 762 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 763 |
+
predetermined_grid_thw=None,
|
| 764 |
+
):
|
| 765 |
+
"""
|
| 766 |
+
Args:
|
| 767 |
+
images (`ImageInput`):
|
| 768 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 769 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 770 |
+
videos (`VideoInput`):
|
| 771 |
+
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
|
| 772 |
+
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
|
| 773 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 774 |
+
Whether to resize the image.
|
| 775 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
| 776 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
| 777 |
+
the longest edge resized to keep the input aspect ratio.
|
| 778 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 779 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 780 |
+
has an effect if `do_resize` is set to `True`.
|
| 781 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 782 |
+
Whether to rescale the image.
|
| 783 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 784 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 785 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 786 |
+
Whether to normalize the image.
|
| 787 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 788 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 789 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 790 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 791 |
+
`True`.
|
| 792 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 793 |
+
Whether to convert the image to RGB.
|
| 794 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 795 |
+
The type of tensors to return. Can be one of:
|
| 796 |
+
- Unset: Return a list of `np.ndarray`.
|
| 797 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 798 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 799 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 800 |
+
The channel dimension format for the output image. Can be one of:
|
| 801 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 802 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 803 |
+
- Unset: Use the channel dimension format of the input image.
|
| 804 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 805 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 806 |
+
from the input image. Can be one of:
|
| 807 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 808 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 809 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 810 |
+
|
| 811 |
+
"""
|
| 812 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 813 |
+
size = size if size is not None else self.size
|
| 814 |
+
resample = resample if resample is not None else self.resample
|
| 815 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 816 |
+
rescale_factor = (
|
| 817 |
+
rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 818 |
+
)
|
| 819 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 820 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 821 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 822 |
+
do_convert_rgb = (
|
| 823 |
+
do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 824 |
+
)
|
| 825 |
+
|
| 826 |
+
if images is not None:
|
| 827 |
+
images = make_batched_images(images)
|
| 828 |
+
|
| 829 |
+
if images is not None and not valid_images(images):
|
| 830 |
+
raise ValueError(
|
| 831 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 832 |
+
"torch.Tensor."
|
| 833 |
+
)
|
| 834 |
+
|
| 835 |
+
data = {}
|
| 836 |
+
if images is not None:
|
| 837 |
+
pixel_values, vision_grid_thws = [], []
|
| 838 |
+
for img_idx, image in enumerate(images):
|
| 839 |
+
if predetermined_grid_thw is not None:
|
| 840 |
+
predetermined_grid_thw_one = [predetermined_grid_thw[img_idx]]
|
| 841 |
+
else:
|
| 842 |
+
predetermined_grid_thw_one = None
|
| 843 |
+
patches, image_grid_thw = self._preprocess(
|
| 844 |
+
image,
|
| 845 |
+
do_resize=do_resize,
|
| 846 |
+
resample=resample,
|
| 847 |
+
do_rescale=do_rescale,
|
| 848 |
+
rescale_factor=rescale_factor,
|
| 849 |
+
do_normalize=do_normalize,
|
| 850 |
+
image_mean=image_mean,
|
| 851 |
+
image_std=image_std,
|
| 852 |
+
data_format=data_format,
|
| 853 |
+
do_convert_rgb=do_convert_rgb,
|
| 854 |
+
input_data_format=input_data_format,
|
| 855 |
+
predetermined_grid_thw=predetermined_grid_thw_one,
|
| 856 |
+
)
|
| 857 |
+
pixel_values.extend(patches)
|
| 858 |
+
vision_grid_thws.append(image_grid_thw)
|
| 859 |
+
pixel_values = np.array(pixel_values)
|
| 860 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
| 861 |
+
data.update(
|
| 862 |
+
{"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
|
| 863 |
+
)
|
| 864 |
+
|
| 865 |
+
if videos is not None:
|
| 866 |
+
videos = make_batched_videos(videos)
|
| 867 |
+
pixel_values, vision_grid_thws = [], []
|
| 868 |
+
for images in videos:
|
| 869 |
+
patches, video_grid_thw = self._preprocess(
|
| 870 |
+
images,
|
| 871 |
+
do_resize=do_resize,
|
| 872 |
+
resample=resample,
|
| 873 |
+
do_rescale=do_rescale,
|
| 874 |
+
rescale_factor=rescale_factor,
|
| 875 |
+
do_normalize=do_normalize,
|
| 876 |
+
image_mean=image_mean,
|
| 877 |
+
image_std=image_std,
|
| 878 |
+
data_format=data_format,
|
| 879 |
+
do_convert_rgb=do_convert_rgb,
|
| 880 |
+
input_data_format=input_data_format,
|
| 881 |
+
predetermined_grid_thw=predetermined_grid_thw,
|
| 882 |
+
)
|
| 883 |
+
pixel_values.extend(patches)
|
| 884 |
+
vision_grid_thws.append(video_grid_thw)
|
| 885 |
+
pixel_values = np.array(pixel_values)
|
| 886 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
| 887 |
+
|
| 888 |
+
data.update(
|
| 889 |
+
{
|
| 890 |
+
"pixel_values_videos": pixel_values,
|
| 891 |
+
"video_grid_thw": vision_grid_thws,
|
| 892 |
+
}
|
| 893 |
+
)
|
| 894 |
+
|
| 895 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
| 896 |
+
|
| 897 |
+
|
| 898 |
+
RAW_VIDEO_DIR = "./download_tmp/raw_video/"
|
| 899 |
+
RAW_IMAGE_DIR = "./download_tmp/raw_images/"
|
| 900 |
+
EXTRACTED_FRAME_DIR = "./download_tmp/extracted_frames/"
|
| 901 |
+
TMP_DIR = "./download_tmp/upload_tmp/"
|
| 902 |
+
|
| 903 |
+
FONT_PATH = os.path.join(Path(__file__).parent.absolute(), "Roboto-Regular.ttf")
|
| 904 |
+
if not os.path.exists(FONT_PATH):
|
| 905 |
+
ttf = requests.get("https://paddlenlp.bj.bcebos.com/vision-language-models/materials/Roboto-Regular.ttf")
|
| 906 |
+
open(FONT_PATH, "wb").write(ttf.content)
|
| 907 |
+
|
| 908 |
+
|
| 909 |
+
def is_gif(data: bytes) -> bool:
|
| 910 |
+
"""
|
| 911 |
+
check if a bytes is a gif based on the magic head
|
| 912 |
+
"""
|
| 913 |
+
return data[:6] in (b"GIF87a", b"GIF89a")
|
| 914 |
+
|
| 915 |
+
|
| 916 |
+
class VideoReaderWrapper(decord.VideoReader):
|
| 917 |
+
"""
|
| 918 |
+
Solving memory leak bug
|
| 919 |
+
|
| 920 |
+
https://github.com/dmlc/decord/issues/208
|
| 921 |
+
"""
|
| 922 |
+
|
| 923 |
+
def __init__(self, video_path, *args, **kwargs):
|
| 924 |
+
with ntf(delete=True, suffix=".gif") as gif_file:
|
| 925 |
+
gif_input = None
|
| 926 |
+
self.original_file = None
|
| 927 |
+
if isinstance(video_path, str):
|
| 928 |
+
self.original_file = video_path
|
| 929 |
+
if video_path.lower().endswith(".gif"):
|
| 930 |
+
gif_input = video_path
|
| 931 |
+
elif isinstance(video_path, bytes):
|
| 932 |
+
if is_gif(video_path):
|
| 933 |
+
gif_file.write(video_path)
|
| 934 |
+
gif_input = gif_file.name
|
| 935 |
+
elif isinstance(video_path, io.BytesIO):
|
| 936 |
+
video_path.seek(0)
|
| 937 |
+
tmp_bytes = video_path.read()
|
| 938 |
+
video_path.seek(0)
|
| 939 |
+
if is_gif(tmp_bytes):
|
| 940 |
+
gif_file.write(tmp_bytes)
|
| 941 |
+
gif_input = gif_file.name
|
| 942 |
+
|
| 943 |
+
if gif_input is not None:
|
| 944 |
+
try:
|
| 945 |
+
# moviepy 1.0
|
| 946 |
+
import moviepy.editor as mp
|
| 947 |
+
except:
|
| 948 |
+
# moviepy 2.0
|
| 949 |
+
import moviepy as mp
|
| 950 |
+
clip = mp.VideoFileClip(gif_input)
|
| 951 |
+
mp4_file = ntf(delete=False, suffix=".mp4")
|
| 952 |
+
clip.write_videofile(mp4_file.name, logger=None)
|
| 953 |
+
clip.close()
|
| 954 |
+
video_path = mp4_file.name
|
| 955 |
+
self.original_file = video_path
|
| 956 |
+
|
| 957 |
+
super().__init__(video_path, *args, **kwargs)
|
| 958 |
+
self.seek(0)
|
| 959 |
+
|
| 960 |
+
def __getitem__(self, key):
|
| 961 |
+
frames = super().__getitem__(key)
|
| 962 |
+
self.seek(0)
|
| 963 |
+
return frames
|
| 964 |
+
|
| 965 |
+
def __del__(self):
|
| 966 |
+
if self.original_file and os.path.exists(self.original_file):
|
| 967 |
+
os.remove(self.original_file)
|
| 968 |
+
|
| 969 |
+
|
| 970 |
+
def get_filename(url=None):
|
| 971 |
+
"""
|
| 972 |
+
Get Filename
|
| 973 |
+
"""
|
| 974 |
+
if url is None:
|
| 975 |
+
return str(uuid.uuid4()).replace("-", "")
|
| 976 |
+
t = datetime.datetime.now()
|
| 977 |
+
if not isinstance(url, bytes):
|
| 978 |
+
url = url.encode("utf-8")
|
| 979 |
+
|
| 980 |
+
md5_hash = hashlib.md5(url).hexdigest()
|
| 981 |
+
pid = os.getpid()
|
| 982 |
+
tid = threading.get_ident()
|
| 983 |
+
|
| 984 |
+
# Remove the suffix to prevent save-jpg from reporting errors
|
| 985 |
+
image_filname = f"{t.year}-{t.month:02d}-{t.day:02d}-{pid}-{tid}-{md5_hash}"
|
| 986 |
+
return image_filname
|
| 987 |
+
|
| 988 |
+
|
| 989 |
+
def file_download(url, download_dir, save_to_disk=False, retry=0, retry_interval=3):
|
| 990 |
+
"""
|
| 991 |
+
Description: Download url, if url is PIL, return directly
|
| 992 |
+
Args:
|
| 993 |
+
url(str, PIL): http/local path/io.Bytes, note that io.Bytes is the image byte stream
|
| 994 |
+
download_path: when save_to_disk=True, return the saved address
|
| 995 |
+
save_to_disk: whether to save in the local path
|
| 996 |
+
"""
|
| 997 |
+
|
| 998 |
+
if isinstance(url, Image.Image):
|
| 999 |
+
return url
|
| 1000 |
+
elif isinstance(url, VideoReaderWrapper):
|
| 1001 |
+
return url
|
| 1002 |
+
elif url.startswith("http"):
|
| 1003 |
+
response = requests.get(url)
|
| 1004 |
+
bytes_data = response.content
|
| 1005 |
+
elif os.path.isfile(url):
|
| 1006 |
+
if save_to_disk:
|
| 1007 |
+
return url
|
| 1008 |
+
bytes_data = open(url, "rb").read()
|
| 1009 |
+
else:
|
| 1010 |
+
bytes_data = base64.b64decode(url)
|
| 1011 |
+
if not save_to_disk:
|
| 1012 |
+
return bytes_data
|
| 1013 |
+
|
| 1014 |
+
download_path = os.path.join(download_dir, get_filename(url))
|
| 1015 |
+
Path(download_path).parent.mkdir(parents=True, exist_ok=True)
|
| 1016 |
+
with open(download_path, "wb") as f:
|
| 1017 |
+
f.write(bytes_data)
|
| 1018 |
+
return download_path
|
| 1019 |
+
|
| 1020 |
+
|
| 1021 |
+
def get_downloadable(
|
| 1022 |
+
url, download_dir=RAW_VIDEO_DIR, save_to_disk=False, retry=0, retry_interval=3
|
| 1023 |
+
):
|
| 1024 |
+
"""download video and store it in the disk
|
| 1025 |
+
|
| 1026 |
+
return downloaded **path** if save_to_disk is set to true
|
| 1027 |
+
return downloaded **bytes** if save_to_disk is set to false
|
| 1028 |
+
"""
|
| 1029 |
+
|
| 1030 |
+
if not os.path.exists(download_dir):
|
| 1031 |
+
os.makedirs(download_dir)
|
| 1032 |
+
downloaded_path = file_download(
|
| 1033 |
+
url,
|
| 1034 |
+
download_dir,
|
| 1035 |
+
save_to_disk=save_to_disk,
|
| 1036 |
+
retry=retry,
|
| 1037 |
+
retry_interval=retry_interval,
|
| 1038 |
+
)
|
| 1039 |
+
return downloaded_path
|
| 1040 |
+
|
| 1041 |
+
|
| 1042 |
+
def get_downloadable_image(
|
| 1043 |
+
download_path, need_exif_info, retry_max_time=0, retry_interval=3
|
| 1044 |
+
):
|
| 1045 |
+
"""
|
| 1046 |
+
Get downloadable with exif info and image processing
|
| 1047 |
+
"""
|
| 1048 |
+
|
| 1049 |
+
def get_image_exif(image):
|
| 1050 |
+
exif_data = image._getexif()
|
| 1051 |
+
exif_info = {}
|
| 1052 |
+
if exif_data is not None:
|
| 1053 |
+
for tag, value in exif_data.items():
|
| 1054 |
+
tag_name = TAGS.get(tag, tag)
|
| 1055 |
+
exif_info[tag_name] = value.strip()
|
| 1056 |
+
return exif_info
|
| 1057 |
+
|
| 1058 |
+
def has_transparent_background(img):
|
| 1059 |
+
"""has_transparent_background"""
|
| 1060 |
+
if img.mode in ("RGBA", "LA") or (
|
| 1061 |
+
img.mode == "P" and "transparency" in img.info
|
| 1062 |
+
):
|
| 1063 |
+
# Check for any pixel with alpha channel less than 255 (fully opaque)
|
| 1064 |
+
alpha = img.convert("RGBA").split()[-1]
|
| 1065 |
+
if alpha.getextrema()[0] < 255:
|
| 1066 |
+
return True
|
| 1067 |
+
return False
|
| 1068 |
+
|
| 1069 |
+
def add_white_background(img):
|
| 1070 |
+
"""
|
| 1071 |
+
Add a white background to a transparent background image
|
| 1072 |
+
"""
|
| 1073 |
+
if img.mode != "RGBA":
|
| 1074 |
+
img = img.convert("RGBA")
|
| 1075 |
+
# Create an image with a white background and the same size as the original image
|
| 1076 |
+
img_white_background = Image.new("RGBA", img.size, (255, 255, 255))
|
| 1077 |
+
|
| 1078 |
+
# Paste the original image onto a white background
|
| 1079 |
+
img_white_background.paste(img, (0, 0), img)
|
| 1080 |
+
|
| 1081 |
+
return img_white_background
|
| 1082 |
+
|
| 1083 |
+
def change_I16_to_L(img):
|
| 1084 |
+
"""
|
| 1085 |
+
Convert image from I;16 mode to L mode
|
| 1086 |
+
"""
|
| 1087 |
+
# Since the point function in I mode only supports addition, subtraction, and multiplication,
|
| 1088 |
+
# the following * (1 / 256) cannot be changed to division.
|
| 1089 |
+
return img.point(lambda i: i * (1 / 256)).convert("L")
|
| 1090 |
+
|
| 1091 |
+
image = get_downloadable(
|
| 1092 |
+
download_path,
|
| 1093 |
+
save_to_disk=False,
|
| 1094 |
+
retry=retry_max_time,
|
| 1095 |
+
retry_interval=retry_interval,
|
| 1096 |
+
)
|
| 1097 |
+
if isinstance(image, Image.Image):
|
| 1098 |
+
pil_image = image
|
| 1099 |
+
else:
|
| 1100 |
+
pil_image = Image.open(io.BytesIO(image))
|
| 1101 |
+
if need_exif_info:
|
| 1102 |
+
try:
|
| 1103 |
+
exif_info = get_image_exif(pil_image)
|
| 1104 |
+
except Exception as why:
|
| 1105 |
+
exif_info = {}
|
| 1106 |
+
else:
|
| 1107 |
+
exif_info = {}
|
| 1108 |
+
|
| 1109 |
+
try:
|
| 1110 |
+
if pil_image.mode == "I;16":
|
| 1111 |
+
pil_image = change_I16_to_L(pil_image)
|
| 1112 |
+
if has_transparent_background(pil_image):
|
| 1113 |
+
pil_image = add_white_background(pil_image)
|
| 1114 |
+
except Exception as e:
|
| 1115 |
+
pass
|
| 1116 |
+
|
| 1117 |
+
return pil_image.convert("RGB"), exif_info
|
| 1118 |
+
|
| 1119 |
+
|
| 1120 |
+
def read_video_decord(video_path, save_to_disk):
|
| 1121 |
+
"""get reader and meta by decord"""
|
| 1122 |
+
video_path = get_downloadable(video_path, save_to_disk=save_to_disk)
|
| 1123 |
+
if isinstance(video_path, VideoReaderWrapper):
|
| 1124 |
+
video_reader = video_path
|
| 1125 |
+
else:
|
| 1126 |
+
if isinstance(video_path, bytes):
|
| 1127 |
+
video_path = io.BytesIO(video_path)
|
| 1128 |
+
video_reader = VideoReaderWrapper(video_path, num_threads=1)
|
| 1129 |
+
vlen = len(video_reader)
|
| 1130 |
+
fps = video_reader.get_avg_fps()
|
| 1131 |
+
duration = vlen / float(fps)
|
| 1132 |
+
|
| 1133 |
+
video_meta = {"fps": fps, "duration": duration, "num_of_frame": vlen}
|
| 1134 |
+
|
| 1135 |
+
return video_reader, video_meta, video_path
|
| 1136 |
+
|
| 1137 |
+
|
| 1138 |
+
def get_frame_indices(
|
| 1139 |
+
vlen,
|
| 1140 |
+
target_frames=-1,
|
| 1141 |
+
target_fps=-1,
|
| 1142 |
+
frames_sample="middle",
|
| 1143 |
+
fix_start=None,
|
| 1144 |
+
input_fps=-1,
|
| 1145 |
+
):
|
| 1146 |
+
"""get_frame_indices"""
|
| 1147 |
+
assert frames_sample in ["rand", "middle", "leading"]
|
| 1148 |
+
if target_frames > 0:
|
| 1149 |
+
assert target_fps <= 0, "target_fps must be negative if target_frames is given."
|
| 1150 |
+
if target_frames > vlen:
|
| 1151 |
+
acc_samples = vlen
|
| 1152 |
+
logger.info(
|
| 1153 |
+
f"target_frames={target_frames} is larger than video length {vlen}, "
|
| 1154 |
+
f"will sample {acc_samples} frames."
|
| 1155 |
+
)
|
| 1156 |
+
else:
|
| 1157 |
+
acc_samples = target_frames
|
| 1158 |
+
logger.debug(
|
| 1159 |
+
f"sampling at target_frames={target_frames}, frames_sample={frames_sample}"
|
| 1160 |
+
)
|
| 1161 |
+
|
| 1162 |
+
# split the video into `acc_samples` intervals, and sample from each interval.
|
| 1163 |
+
intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
|
| 1164 |
+
ranges = []
|
| 1165 |
+
for idx, interv in enumerate(intervals[:-1]):
|
| 1166 |
+
ranges.append((interv, intervals[idx + 1] - 1))
|
| 1167 |
+
if frames_sample == "rand":
|
| 1168 |
+
try:
|
| 1169 |
+
frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
|
| 1170 |
+
except Exception as e:
|
| 1171 |
+
frame_indices = np.random.permutation(vlen)[:acc_samples]
|
| 1172 |
+
frame_indices.sort()
|
| 1173 |
+
frame_indices = list(frame_indices)
|
| 1174 |
+
elif fix_start is not None:
|
| 1175 |
+
frame_indices = [x[0] + fix_start for x in ranges]
|
| 1176 |
+
elif frames_sample == "leading":
|
| 1177 |
+
frame_indices = [x[0] for x in ranges]
|
| 1178 |
+
elif frames_sample == "middle":
|
| 1179 |
+
frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
|
| 1180 |
+
else:
|
| 1181 |
+
raise NotImplementedError
|
| 1182 |
+
|
| 1183 |
+
elif target_fps > 0:
|
| 1184 |
+
assert (
|
| 1185 |
+
target_frames <= 0
|
| 1186 |
+
), "target_frames must be negative if target_fps is given."
|
| 1187 |
+
assert input_fps > 0, "input_fps must be provided if target_fps is given."
|
| 1188 |
+
logger.info(f"sampling at fps={target_fps}, frames_sample={frames_sample}")
|
| 1189 |
+
duration = float(vlen) / input_fps
|
| 1190 |
+
delta = (
|
| 1191 |
+
1 / target_fps
|
| 1192 |
+
) # gap between frames, this is also the clip length each frame represents
|
| 1193 |
+
if frames_sample == "middle":
|
| 1194 |
+
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
|
| 1195 |
+
elif frames_sample == "leading":
|
| 1196 |
+
frame_seconds = np.arange(0, duration, delta)
|
| 1197 |
+
if frames_sample == "rand":
|
| 1198 |
+
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
|
| 1199 |
+
rand_offset = np.random.rand(*(frame_seconds.shape)) - 0.5
|
| 1200 |
+
frame_seconds += rand_offset * delta
|
| 1201 |
+
frame_indices = np.around(frame_seconds * input_fps).astype(int)
|
| 1202 |
+
frame_indices = [e for e in frame_indices if e < vlen]
|
| 1203 |
+
|
| 1204 |
+
else:
|
| 1205 |
+
raise ValueError(
|
| 1206 |
+
"Must provide either positive target_fps or positive target_frames."
|
| 1207 |
+
)
|
| 1208 |
+
|
| 1209 |
+
return frame_indices
|
| 1210 |
+
|
| 1211 |
+
|
| 1212 |
+
def read_frames_decord(
|
| 1213 |
+
video_path,
|
| 1214 |
+
video_reader,
|
| 1215 |
+
video_meta,
|
| 1216 |
+
target_frames=-1,
|
| 1217 |
+
target_fps=-1,
|
| 1218 |
+
frames_sample="middle",
|
| 1219 |
+
fix_start=None,
|
| 1220 |
+
save_to_disk=False,
|
| 1221 |
+
cache_dir=EXTRACTED_FRAME_DIR,
|
| 1222 |
+
frame_indices=None,
|
| 1223 |
+
tol=10,
|
| 1224 |
+
):
|
| 1225 |
+
"""get frames by decord"""
|
| 1226 |
+
|
| 1227 |
+
if frame_indices is None:
|
| 1228 |
+
frame_indices = get_frame_indices(
|
| 1229 |
+
video_meta["num_of_frame"],
|
| 1230 |
+
target_frames=target_frames,
|
| 1231 |
+
target_fps=target_fps,
|
| 1232 |
+
frames_sample=frames_sample,
|
| 1233 |
+
fix_start=fix_start,
|
| 1234 |
+
input_fps=video_meta["fps"],
|
| 1235 |
+
)
|
| 1236 |
+
|
| 1237 |
+
frames = []
|
| 1238 |
+
for frame_indice_index in range(0, len(frame_indices)):
|
| 1239 |
+
frame_indice = frame_indices[frame_indice_index]
|
| 1240 |
+
try:
|
| 1241 |
+
frames.append(video_reader[frame_indice].asnumpy()) # (T, H, W, C)
|
| 1242 |
+
except Exception as e:
|
| 1243 |
+
logger.debug(f"encounter error when get frame: {frame_indice}, error: {e}")
|
| 1244 |
+
previous_counter = 1
|
| 1245 |
+
later_counter = 1
|
| 1246 |
+
previous_after_flag = True
|
| 1247 |
+
if frame_indice == 0 or frame_indice == len(video_reader) - 1:
|
| 1248 |
+
cur_tol = tol * 2
|
| 1249 |
+
else:
|
| 1250 |
+
cur_tol = tol
|
| 1251 |
+
while previous_counter < cur_tol or later_counter < cur_tol:
|
| 1252 |
+
if previous_after_flag:
|
| 1253 |
+
if frame_indice - previous_counter < 0:
|
| 1254 |
+
previous_counter += 1
|
| 1255 |
+
previous_after_flag = not previous_after_flag
|
| 1256 |
+
continue
|
| 1257 |
+
try:
|
| 1258 |
+
frames.append(
|
| 1259 |
+
video_reader[frame_indice - previous_counter].asnumpy()
|
| 1260 |
+
)
|
| 1261 |
+
logger.info(
|
| 1262 |
+
f"replace {frame_indice}-th frame with {frame_indice-previous_counter}-th frame"
|
| 1263 |
+
)
|
| 1264 |
+
frame_indices[frame_indice_index] = (
|
| 1265 |
+
frame_indice - previous_counter
|
| 1266 |
+
)
|
| 1267 |
+
break
|
| 1268 |
+
except Exception as e:
|
| 1269 |
+
previous_counter += 1
|
| 1270 |
+
else:
|
| 1271 |
+
if frame_indice + later_counter >= len(video_reader):
|
| 1272 |
+
later_counter += 1
|
| 1273 |
+
previous_after_flag = not previous_after_flag
|
| 1274 |
+
continue
|
| 1275 |
+
try:
|
| 1276 |
+
frames.append(
|
| 1277 |
+
video_reader[frame_indice + later_counter].asnumpy()
|
| 1278 |
+
)
|
| 1279 |
+
logger.info(
|
| 1280 |
+
f"replace {frame_indice}-th frame with {frame_indice+later_counter}-th frame"
|
| 1281 |
+
)
|
| 1282 |
+
frame_indices[frame_indice_index] = frame_indice + later_counter
|
| 1283 |
+
break
|
| 1284 |
+
except Exception as e:
|
| 1285 |
+
later_counter += 1
|
| 1286 |
+
previous_after_flag = not previous_after_flag
|
| 1287 |
+
|
| 1288 |
+
frames = np.stack(frames, axis=0)
|
| 1289 |
+
assert len(frames) == len(
|
| 1290 |
+
frame_indices
|
| 1291 |
+
), f"len(frames): {len(frames)} != len(frame_indices): {len(frame_indices)}"
|
| 1292 |
+
|
| 1293 |
+
ret = []
|
| 1294 |
+
|
| 1295 |
+
url_sha1 = get_filename()
|
| 1296 |
+
for idx, frame in enumerate(frames):
|
| 1297 |
+
tmp = Image.fromarray(frame, "RGB")
|
| 1298 |
+
if save_to_disk:
|
| 1299 |
+
save_path = os.path.join(cache_dir, f"{url_sha1}", f"{idx}.png")
|
| 1300 |
+
if not os.path.exists(os.path.dirname(save_path)):
|
| 1301 |
+
os.makedirs(os.path.dirname(save_path))
|
| 1302 |
+
tmp.save(save_path)
|
| 1303 |
+
tmp = save_path
|
| 1304 |
+
ret.append(tmp)
|
| 1305 |
+
|
| 1306 |
+
time_stamps = [
|
| 1307 |
+
frame_idx * video_meta["duration"] / video_meta["num_of_frame"]
|
| 1308 |
+
for frame_idx in frame_indices
|
| 1309 |
+
]
|
| 1310 |
+
|
| 1311 |
+
return ret, frame_indices, time_stamps
|
| 1312 |
+
|
| 1313 |
+
|
| 1314 |
+
def render_single_image_with_timestamp(
|
| 1315 |
+
image: Image, number: str, rate: float, font_path: str = FONT_PATH
|
| 1316 |
+
):
|
| 1317 |
+
"""
|
| 1318 |
+
Function: Renders a timestamp to the image of pil.image
|
| 1319 |
+
The timestamp size is the rate of min(width, height)
|
| 1320 |
+
The font color is black, the outline is white, and the outline size is 10% of the font
|
| 1321 |
+
Returns an Image object
|
| 1322 |
+
"""
|
| 1323 |
+
draw = ImageDraw.Draw(image)
|
| 1324 |
+
width, height = image.size
|
| 1325 |
+
font_size = int(min(width, height) * rate)
|
| 1326 |
+
outline_size = int(font_size * 0.1)
|
| 1327 |
+
font = ImageFont.truetype(font_path, font_size)
|
| 1328 |
+
x = 0
|
| 1329 |
+
y = 0
|
| 1330 |
+
|
| 1331 |
+
# Draw a black timestamp with a white border
|
| 1332 |
+
draw.text(
|
| 1333 |
+
(x, y),
|
| 1334 |
+
number,
|
| 1335 |
+
font=font,
|
| 1336 |
+
fill=(0, 0, 0),
|
| 1337 |
+
stroke_width=outline_size,
|
| 1338 |
+
stroke_fill=(255, 255, 255),
|
| 1339 |
+
)
|
| 1340 |
+
|
| 1341 |
+
return image
|
| 1342 |
+
|
| 1343 |
+
|
| 1344 |
+
def timestamp_converting(time_stamp_in_seconds):
|
| 1345 |
+
"""
|
| 1346 |
+
convert timestamp format from seconds to hr:min:sec
|
| 1347 |
+
"""
|
| 1348 |
+
# get hours
|
| 1349 |
+
hours = 0
|
| 1350 |
+
while time_stamp_in_seconds >= 3600:
|
| 1351 |
+
hours += 1
|
| 1352 |
+
time_stamp_in_seconds -= 3600
|
| 1353 |
+
# get minutes
|
| 1354 |
+
mins = 0
|
| 1355 |
+
while time_stamp_in_seconds >= 60:
|
| 1356 |
+
mins += 1
|
| 1357 |
+
time_stamp_in_seconds -= 60
|
| 1358 |
+
time_hours = f"{int(hours):02d}"
|
| 1359 |
+
time_mins = f"{int(mins):02d}"
|
| 1360 |
+
time_secs = f"{time_stamp_in_seconds:05.02f}"
|
| 1361 |
+
fi_time_stamp = time_hours + ":" + time_mins + ":" + time_secs
|
| 1362 |
+
|
| 1363 |
+
return fi_time_stamp
|
| 1364 |
+
|
| 1365 |
+
|
| 1366 |
+
def render_frame_timestamp(frame, timestamp, font_rate=0.1):
|
| 1367 |
+
"""
|
| 1368 |
+
Function, given a frame, render the index in order
|
| 1369 |
+
Logic: render the index to the upper left corner of the image
|
| 1370 |
+
frame: frame, PIL.Image object
|
| 1371 |
+
timestamp: timestamp, in seconds
|
| 1372 |
+
font_rate: the ratio of font size to min(wi, hei)
|
| 1373 |
+
"""
|
| 1374 |
+
time_stamp = "time: " + timestamp_converting(timestamp)
|
| 1375 |
+
new_frame = render_single_image_with_timestamp(frame, time_stamp, font_rate)
|
| 1376 |
+
|
| 1377 |
+
return new_frame
|
| 1378 |
+
|
| 1379 |
+
|
| 1380 |
+
IDS_TYPE_FLAG = {"text": 0, "image": 1, "video": 2, "audio": 3}
|
| 1381 |
+
|
| 1382 |
+
|
| 1383 |
+
class Ernie4_5_VLProcessor(ProcessorMixin):
|
| 1384 |
+
"""
|
| 1385 |
+
Processes multimodal chat messages into model-ready inputs,
|
| 1386 |
+
handling text, images, and videos with 3D positional embeddings.
|
| 1387 |
+
"""
|
| 1388 |
+
|
| 1389 |
+
attributes = ["image_processor", "tokenizer"]
|
| 1390 |
+
valid_kwargs = [
|
| 1391 |
+
"chat_template",
|
| 1392 |
+
"spatial_conv_size",
|
| 1393 |
+
"temporal_conv_size",
|
| 1394 |
+
"image_min_pixels",
|
| 1395 |
+
"image_max_pixels",
|
| 1396 |
+
"video_min_pixels",
|
| 1397 |
+
"video_max_pixels",
|
| 1398 |
+
"video_target_frames",
|
| 1399 |
+
"video_frames_sample",
|
| 1400 |
+
"video_max_frames",
|
| 1401 |
+
"video_min_frames",
|
| 1402 |
+
"video_fps",
|
| 1403 |
+
]
|
| 1404 |
+
image_processor_class = "AutoImageProcessor"
|
| 1405 |
+
tokenizer_class = "AutoTokenizer"
|
| 1406 |
+
|
| 1407 |
+
CLS_TOKEN = "<|begin_of_sentence|>"
|
| 1408 |
+
SEP_TOKEN = "<|end_of_sentence|>"
|
| 1409 |
+
IMG_START = "<|IMAGE_START|>"
|
| 1410 |
+
IMG_END = "<|IMAGE_END|>"
|
| 1411 |
+
VID_START = "<|VIDEO_START|>"
|
| 1412 |
+
VID_END = "<|VIDEO_END|>"
|
| 1413 |
+
|
| 1414 |
+
def __init__(
|
| 1415 |
+
self,
|
| 1416 |
+
image_processor=None,
|
| 1417 |
+
tokenizer=None,
|
| 1418 |
+
chat_template=None,
|
| 1419 |
+
spatial_conv_size: int = 2,
|
| 1420 |
+
temporal_conv_size: int = 2,
|
| 1421 |
+
image_min_pixels: int = 4 * 28 * 28,
|
| 1422 |
+
image_max_pixels: int = 6177 * 28 * 28,
|
| 1423 |
+
video_min_pixels: int = 299 * 28 * 28,
|
| 1424 |
+
video_max_pixels: int = 1196 * 28 * 28,
|
| 1425 |
+
video_target_frames: int = -1,
|
| 1426 |
+
video_frames_sample: str = "leading",
|
| 1427 |
+
video_max_frames: int = 180,
|
| 1428 |
+
video_min_frames: int = 16,
|
| 1429 |
+
video_fps: int = 2,
|
| 1430 |
+
**kwargs,
|
| 1431 |
+
):
|
| 1432 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
| 1433 |
+
self.tokenizer.ignored_index = -100
|
| 1434 |
+
|
| 1435 |
+
# Convolution sizes for patch aggregation
|
| 1436 |
+
self.spatial_conv_size = spatial_conv_size
|
| 1437 |
+
self.temporal_conv_size = temporal_conv_size
|
| 1438 |
+
|
| 1439 |
+
# Pixel constraints
|
| 1440 |
+
self.image_min_pixels = image_min_pixels
|
| 1441 |
+
self.image_max_pixels = image_max_pixels
|
| 1442 |
+
self.video_min_pixels = video_min_pixels
|
| 1443 |
+
self.video_max_pixels = video_max_pixels
|
| 1444 |
+
|
| 1445 |
+
# Video sampling parameters
|
| 1446 |
+
self.target_frames = video_target_frames
|
| 1447 |
+
self.frames_sample = video_frames_sample
|
| 1448 |
+
self.max_frames = video_max_frames
|
| 1449 |
+
self.min_frames = video_min_frames
|
| 1450 |
+
self.fps = video_fps
|
| 1451 |
+
|
| 1452 |
+
# Special tokens and IDs
|
| 1453 |
+
self.cls_token = self.CLS_TOKEN
|
| 1454 |
+
self.sep_token = self.SEP_TOKEN
|
| 1455 |
+
self.image_start = self.IMG_START
|
| 1456 |
+
self.image_end = self.IMG_END
|
| 1457 |
+
self.video_start = self.VID_START
|
| 1458 |
+
self.video_end = self.VID_END
|
| 1459 |
+
self.image_patch_id = self.tokenizer.convert_tokens_to_ids(
|
| 1460 |
+
"<|IMAGE_PLACEHOLDER|>"
|
| 1461 |
+
)
|
| 1462 |
+
|
| 1463 |
+
self.token_type_mapping = self._build_token_type_mapping()
|
| 1464 |
+
self.is_training = True
|
| 1465 |
+
self.role_prefixes = {"system": "", "user": "User: ", "bot": "Assistant: "}
|
| 1466 |
+
|
| 1467 |
+
def _build_token_type_mapping(self) -> Dict[Any, int]:
|
| 1468 |
+
mapping = defaultdict(lambda: IDS_TYPE_FLAG["text"])
|
| 1469 |
+
for token in (self.IMG_START, self.IMG_END, self.VID_START, self.VID_END):
|
| 1470 |
+
mapping[token] = IDS_TYPE_FLAG["image"]
|
| 1471 |
+
mapping[self.image_patch_id] = IDS_TYPE_FLAG["image"]
|
| 1472 |
+
return mapping
|
| 1473 |
+
|
| 1474 |
+
def train(self) -> None:
|
| 1475 |
+
"""Enable training mode (produces labels)."""
|
| 1476 |
+
self.is_training = True
|
| 1477 |
+
|
| 1478 |
+
def eval(self) -> None:
|
| 1479 |
+
"""Enable evaluation mode (doesn't produce labels)."""
|
| 1480 |
+
self.is_training = False
|
| 1481 |
+
|
| 1482 |
+
def _download_image(
|
| 1483 |
+
self,
|
| 1484 |
+
item: Dict,
|
| 1485 |
+
):
|
| 1486 |
+
"""Download image from url and resize it to the specified size."""
|
| 1487 |
+
url_info = item.get("image_url", {})
|
| 1488 |
+
url = url_info.get("url")
|
| 1489 |
+
w = url_info.get("image_width", None)
|
| 1490 |
+
h = url_info.get("image_height", None)
|
| 1491 |
+
data = get_downloadable(url, download_dir=RAW_IMAGE_DIR, save_to_disk=False)
|
| 1492 |
+
|
| 1493 |
+
img = Image.open(io.BytesIO(data) if isinstance(data, bytes) else data)
|
| 1494 |
+
if w and h:
|
| 1495 |
+
img = img.resize((w, h))
|
| 1496 |
+
return img
|
| 1497 |
+
|
| 1498 |
+
def _download_video(self, item: Dict):
|
| 1499 |
+
"""Download video from url and resize it to the specified size."""
|
| 1500 |
+
url_info = item.get("video_url", {})
|
| 1501 |
+
url = url_info.get("url")
|
| 1502 |
+
|
| 1503 |
+
frames = self._load_and_process_video(url, item)
|
| 1504 |
+
|
| 1505 |
+
pixel_stack = np.stack([np.array(f.convert("RGB")) for f in frames], axis=0)
|
| 1506 |
+
return pixel_stack
|
| 1507 |
+
|
| 1508 |
+
def process_vision_info(self, messages: List[Dict[str, Any]]):
|
| 1509 |
+
"""Preprocess messages into lists of text, images, and videos."""
|
| 1510 |
+
images = []
|
| 1511 |
+
videos = []
|
| 1512 |
+
|
| 1513 |
+
for msg in messages:
|
| 1514 |
+
content_items = msg.get("content")
|
| 1515 |
+
if not isinstance(content_items, list):
|
| 1516 |
+
content_items = [content_items]
|
| 1517 |
+
|
| 1518 |
+
for item in content_items:
|
| 1519 |
+
if item.get("type") == "image_url":
|
| 1520 |
+
img = self._download_image(item)
|
| 1521 |
+
images.append(img)
|
| 1522 |
+
elif item.get("type") == "video_url":
|
| 1523 |
+
pixel_stack = self._download_video(item)
|
| 1524 |
+
videos.append(pixel_stack)
|
| 1525 |
+
|
| 1526 |
+
return images, videos
|
| 1527 |
+
|
| 1528 |
+
def __call__(
|
| 1529 |
+
self,
|
| 1530 |
+
text: Union[str, List[str]],
|
| 1531 |
+
images: List[Image.Image] = None,
|
| 1532 |
+
videos: List[List[Image.Image]] = None,
|
| 1533 |
+
**kwargs,
|
| 1534 |
+
) -> BatchFeature:
|
| 1535 |
+
"""
|
| 1536 |
+
Convert chat messages into model inputs.
|
| 1537 |
+
Returns a dict with input_ids, token_type_ids, position_ids, images, grid_thw, image_type_ids, labels.
|
| 1538 |
+
"""
|
| 1539 |
+
outputs = {
|
| 1540 |
+
"input_ids": [],
|
| 1541 |
+
"token_type_ids": [],
|
| 1542 |
+
"position_ids": [],
|
| 1543 |
+
"images": [],
|
| 1544 |
+
"grid_thw": [],
|
| 1545 |
+
"image_type_ids": [],
|
| 1546 |
+
"cur_position": 0,
|
| 1547 |
+
"pic_cnt": 0,
|
| 1548 |
+
"video_cnt": 0,
|
| 1549 |
+
}
|
| 1550 |
+
if images is None:
|
| 1551 |
+
images = []
|
| 1552 |
+
if videos is None:
|
| 1553 |
+
videos = []
|
| 1554 |
+
if not isinstance(text, list):
|
| 1555 |
+
text = [text]
|
| 1556 |
+
|
| 1557 |
+
texts = text[0]
|
| 1558 |
+
|
| 1559 |
+
new_video_seg = True
|
| 1560 |
+
for text_with_image in texts.split(self.VID_START + "<|video@placeholder|>" + self.VID_END):
|
| 1561 |
+
new_text_seg = True
|
| 1562 |
+
if not new_video_seg:
|
| 1563 |
+
self._add_video(videos[outputs["video_cnt"]], outputs)
|
| 1564 |
+
for text in text_with_image.split(self.IMG_START + "<|image@placeholder|>" + self.IMG_END):
|
| 1565 |
+
if not new_text_seg:
|
| 1566 |
+
self._add_image(images[outputs["pic_cnt"]], outputs)
|
| 1567 |
+
self._add_text(text, outputs)
|
| 1568 |
+
new_text_seg = False
|
| 1569 |
+
new_video_seg = False
|
| 1570 |
+
|
| 1571 |
+
for key in ["cur_position", "pic_cnt", "video_cnt"]:
|
| 1572 |
+
outputs.pop(key, None)
|
| 1573 |
+
|
| 1574 |
+
outputs = self._pack_outputs(outputs)
|
| 1575 |
+
for key in outputs.keys():
|
| 1576 |
+
if isinstance(outputs[key], np.ndarray):
|
| 1577 |
+
if key in ["images", "grid_thw"]:
|
| 1578 |
+
outputs[key] = torch.tensor(np.array(outputs[key]))
|
| 1579 |
+
else:
|
| 1580 |
+
outputs[key] = torch.tensor(np.array([outputs[key]]))
|
| 1581 |
+
|
| 1582 |
+
return BatchFeature(data=outputs)
|
| 1583 |
+
|
| 1584 |
+
def _add_special_token(self, token: Union[str, int], outputs: Dict) -> None:
|
| 1585 |
+
"""add special token to outputs"""
|
| 1586 |
+
token_id = (
|
| 1587 |
+
token
|
| 1588 |
+
if isinstance(token, int)
|
| 1589 |
+
else self.tokenizer.convert_tokens_to_ids(token)
|
| 1590 |
+
)
|
| 1591 |
+
outputs["input_ids"].append(token_id)
|
| 1592 |
+
outputs["token_type_ids"].append(self.token_type_mapping[token])
|
| 1593 |
+
pos = outputs["cur_position"]
|
| 1594 |
+
outputs["position_ids"].append([pos] * 3)
|
| 1595 |
+
outputs["cur_position"] += 1
|
| 1596 |
+
|
| 1597 |
+
def _add_text(self, text: str, outputs: Dict) -> None:
|
| 1598 |
+
"""add text to outputs"""
|
| 1599 |
+
tokens = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(text))
|
| 1600 |
+
outputs["input_ids"].extend(tokens)
|
| 1601 |
+
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["text"]] * len(tokens))
|
| 1602 |
+
|
| 1603 |
+
start = outputs["cur_position"]
|
| 1604 |
+
for i in range(len(tokens)):
|
| 1605 |
+
outputs["position_ids"].append([start + i] * 3)
|
| 1606 |
+
outputs["cur_position"] += len(tokens)
|
| 1607 |
+
|
| 1608 |
+
def _add_image(self, img: Image.Image, outputs: Dict) -> None:
|
| 1609 |
+
"""add image to outputs"""
|
| 1610 |
+
outputs["pic_cnt"] += 1
|
| 1611 |
+
self._add_special_token(self.IMG_START, outputs)
|
| 1612 |
+
|
| 1613 |
+
patches_h, patches_w = self.image_processor.get_smarted_resize(
|
| 1614 |
+
img.height,
|
| 1615 |
+
img.width,
|
| 1616 |
+
min_pixels=self.image_min_pixels,
|
| 1617 |
+
max_pixels=self.image_max_pixels,
|
| 1618 |
+
)[1]
|
| 1619 |
+
num_tokens = (patches_h * patches_w) // (self.spatial_conv_size**2)
|
| 1620 |
+
|
| 1621 |
+
outputs["input_ids"].extend([self.image_patch_id] * num_tokens)
|
| 1622 |
+
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["image"]] * num_tokens)
|
| 1623 |
+
|
| 1624 |
+
pos_ids = self._compute_3d_positions(
|
| 1625 |
+
1, patches_h, patches_w, outputs["cur_position"]
|
| 1626 |
+
)
|
| 1627 |
+
outputs["position_ids"].extend(pos_ids)
|
| 1628 |
+
outputs["cur_position"] = np.max(pos_ids) + 1
|
| 1629 |
+
|
| 1630 |
+
# Preprocess pixels
|
| 1631 |
+
ret = self.image_processor.preprocess(
|
| 1632 |
+
images=[img.convert("RGB")],
|
| 1633 |
+
do_normalize=False,
|
| 1634 |
+
do_rescale=False,
|
| 1635 |
+
predetermined_grid_thw=np.array([[patches_h, patches_w]]),
|
| 1636 |
+
do_convert_rgb=True,
|
| 1637 |
+
input_data_format=ChannelDimension.LAST,
|
| 1638 |
+
)
|
| 1639 |
+
outputs["images"].append(ret["pixel_values"])
|
| 1640 |
+
outputs["grid_thw"].append(ret["image_grid_thw"])
|
| 1641 |
+
outputs["image_type_ids"].append(0)
|
| 1642 |
+
|
| 1643 |
+
self._add_special_token(self.IMG_END, outputs)
|
| 1644 |
+
|
| 1645 |
+
def _add_video(
|
| 1646 |
+
self, pixel_stack: np.ndarray, outputs: Dict
|
| 1647 |
+
) -> None:
|
| 1648 |
+
outputs["video_cnt"] += 1
|
| 1649 |
+
self._add_special_token(self.VID_START, outputs)
|
| 1650 |
+
|
| 1651 |
+
patches_h, patches_w = self.image_processor.get_smarted_resize(
|
| 1652 |
+
pixel_stack.shape[1],
|
| 1653 |
+
pixel_stack.shape[2],
|
| 1654 |
+
min_pixels=self.video_min_pixels,
|
| 1655 |
+
max_pixels=self.video_max_pixels,
|
| 1656 |
+
)[1]
|
| 1657 |
+
num_frames = pixel_stack.shape[0]
|
| 1658 |
+
num_tokens = (num_frames * patches_h * patches_w) // (
|
| 1659 |
+
self.spatial_conv_size**2 * self.temporal_conv_size
|
| 1660 |
+
)
|
| 1661 |
+
|
| 1662 |
+
ret = self.image_processor.preprocess(
|
| 1663 |
+
images=None,
|
| 1664 |
+
videos=pixel_stack,
|
| 1665 |
+
do_normalize=False,
|
| 1666 |
+
do_rescale=False,
|
| 1667 |
+
predetermined_grid_thw=np.array([[patches_h, patches_w]] * num_frames),
|
| 1668 |
+
do_convert_rgb=True,
|
| 1669 |
+
input_data_format=ChannelDimension.LAST,
|
| 1670 |
+
)
|
| 1671 |
+
outputs["images"].append(ret["pixel_values_videos"])
|
| 1672 |
+
outputs["grid_thw"].append(ret["video_grid_thw"])
|
| 1673 |
+
outputs["image_type_ids"].extend([1] * num_frames)
|
| 1674 |
+
|
| 1675 |
+
outputs["input_ids"].extend([self.image_patch_id] * num_tokens)
|
| 1676 |
+
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["video"]] * num_tokens)
|
| 1677 |
+
|
| 1678 |
+
pos_ids = self._compute_3d_positions(
|
| 1679 |
+
num_frames, patches_h, patches_w, outputs["cur_position"]
|
| 1680 |
+
)
|
| 1681 |
+
outputs["position_ids"].extend(pos_ids)
|
| 1682 |
+
outputs["cur_position"] = np.max(pos_ids) + 1
|
| 1683 |
+
|
| 1684 |
+
self._add_special_token(self.VID_END, outputs)
|
| 1685 |
+
|
| 1686 |
+
def _load_and_process_video(self, url: str, item: Dict) -> List[Image.Image]:
|
| 1687 |
+
reader, meta, path = read_video_decord(url, save_to_disk=False)
|
| 1688 |
+
|
| 1689 |
+
video_frame_args = dict()
|
| 1690 |
+
video_frame_args["fps"] = item.get("fps", self.fps)
|
| 1691 |
+
video_frame_args["min_frames"] = item.get("min_frames", self.min_frames)
|
| 1692 |
+
video_frame_args["max_frames"] = item.get("max_frames", self.max_frames)
|
| 1693 |
+
video_frame_args["target_frames"] = item.get(
|
| 1694 |
+
"target_frames", self.target_frames
|
| 1695 |
+
)
|
| 1696 |
+
video_frame_args["frames_sample"] = item.get(
|
| 1697 |
+
"frames_sample", self.frames_sample
|
| 1698 |
+
)
|
| 1699 |
+
|
| 1700 |
+
video_frame_args = self._set_video_frame_args(video_frame_args, meta)
|
| 1701 |
+
|
| 1702 |
+
frames_data, _, timestamps = read_frames_decord(
|
| 1703 |
+
path,
|
| 1704 |
+
reader,
|
| 1705 |
+
meta,
|
| 1706 |
+
target_frames=video_frame_args["target_frames"],
|
| 1707 |
+
target_fps=video_frame_args["fps"],
|
| 1708 |
+
frames_sample=video_frame_args["frames_sample"],
|
| 1709 |
+
save_to_disk=False,
|
| 1710 |
+
)
|
| 1711 |
+
|
| 1712 |
+
frames: List[Image.Image] = []
|
| 1713 |
+
for img_array, ts in zip(frames_data, timestamps):
|
| 1714 |
+
frames.append(render_frame_timestamp(img_array, ts))
|
| 1715 |
+
# Ensure even number of frames for temporal conv
|
| 1716 |
+
if len(frames) % 2 != 0:
|
| 1717 |
+
frames.append(copy.deepcopy(frames[-1]))
|
| 1718 |
+
return frames
|
| 1719 |
+
|
| 1720 |
+
def _set_video_frame_args(self, video_frame_args, video_meta):
|
| 1721 |
+
"""
|
| 1722 |
+
Set the final frame extraction parameters based on known parameters and priorities
|
| 1723 |
+
"""
|
| 1724 |
+
# Priority: video_target_frames > (video_min_frames, video_max_frames) > video_fps
|
| 1725 |
+
if video_frame_args["target_frames"] > 0:
|
| 1726 |
+
if video_frame_args["fps"] >= 0:
|
| 1727 |
+
raise ValueError("fps must be negative if target_frames is given")
|
| 1728 |
+
if (
|
| 1729 |
+
video_frame_args["min_frames"] > 0
|
| 1730 |
+
and video_frame_args["target_frames"] < video_frame_args["min_frames"]
|
| 1731 |
+
):
|
| 1732 |
+
raise ValueError("target_frames must be larger than min_frames")
|
| 1733 |
+
if (
|
| 1734 |
+
video_frame_args["max_frames"] > 0
|
| 1735 |
+
and video_frame_args["target_frames"] > video_frame_args["max_frames"]
|
| 1736 |
+
):
|
| 1737 |
+
raise ValueError("target_frames must be smaller than max_frames")
|
| 1738 |
+
else:
|
| 1739 |
+
if video_frame_args["fps"] < 0:
|
| 1740 |
+
raise ValueError(
|
| 1741 |
+
"Must provide either positive target_fps or positive target_frames."
|
| 1742 |
+
)
|
| 1743 |
+
# First calculate the number of frames extracted under video_fps
|
| 1744 |
+
frames_to_extract = int(video_meta["duration"] * video_frame_args["fps"])
|
| 1745 |
+
# Determine whether it is within the target range. If not, take target_frames as the upper or lower bound
|
| 1746 |
+
if (
|
| 1747 |
+
video_frame_args["min_frames"] > 0
|
| 1748 |
+
and video_frame_args["max_frames"] > 0
|
| 1749 |
+
and video_frame_args["min_frames"] > video_frame_args["max_frames"]
|
| 1750 |
+
):
|
| 1751 |
+
raise ValueError("min_frames must be smaller than max_frames")
|
| 1752 |
+
if (
|
| 1753 |
+
video_frame_args["min_frames"] > 0
|
| 1754 |
+
and frames_to_extract < video_frame_args["min_frames"]
|
| 1755 |
+
):
|
| 1756 |
+
video_frame_args["target_frames"] = video_frame_args["min_frames"]
|
| 1757 |
+
video_frame_args["fps"] = -1
|
| 1758 |
+
if (
|
| 1759 |
+
video_frame_args["max_frames"] > 0
|
| 1760 |
+
and frames_to_extract > video_frame_args["max_frames"]
|
| 1761 |
+
):
|
| 1762 |
+
video_frame_args["target_frames"] = video_frame_args["max_frames"]
|
| 1763 |
+
video_frame_args["fps"] = -1
|
| 1764 |
+
|
| 1765 |
+
return video_frame_args
|
| 1766 |
+
|
| 1767 |
+
def _compute_3d_positions(
|
| 1768 |
+
self, t: int, h: int, w: int, start_idx: int
|
| 1769 |
+
) -> List[List[int]]:
|
| 1770 |
+
# Downsample time if needed
|
| 1771 |
+
t_eff = t // self.temporal_conv_size if t != 1 else 1
|
| 1772 |
+
gh, gw = h // self.spatial_conv_size, w // self.spatial_conv_size
|
| 1773 |
+
time_idx = np.repeat(np.arange(t_eff), gh * gw)
|
| 1774 |
+
h_idx = np.tile(np.repeat(np.arange(gh), gw), t_eff)
|
| 1775 |
+
w_idx = np.tile(np.arange(gw), t_eff * gh)
|
| 1776 |
+
|
| 1777 |
+
coords = list(zip(time_idx, h_idx, w_idx))
|
| 1778 |
+
return [
|
| 1779 |
+
[start_idx + ti, start_idx + hi, start_idx + wi] for ti, hi, wi in coords
|
| 1780 |
+
]
|
| 1781 |
+
|
| 1782 |
+
def _pack_outputs(self, outs: Dict) -> Dict[str, Any]:
|
| 1783 |
+
# Stack or nullify image-related fields
|
| 1784 |
+
if not outs["images"]:
|
| 1785 |
+
outs["images"] = None
|
| 1786 |
+
outs["grid_thw"] = None
|
| 1787 |
+
outs["image_type_ids"] = None
|
| 1788 |
+
else:
|
| 1789 |
+
outs["images"] = np.vstack(outs["images"])
|
| 1790 |
+
outs["grid_thw"] = np.vstack(outs["grid_thw"])
|
| 1791 |
+
outs["image_type_ids"] = np.array(outs["image_type_ids"])
|
| 1792 |
+
|
| 1793 |
+
# Convert lists to arrays
|
| 1794 |
+
outs["input_ids"] = np.array(outs["input_ids"], dtype=np.int64)
|
| 1795 |
+
outs["token_type_ids"] = np.array(outs["token_type_ids"], dtype=np.int64)
|
| 1796 |
+
outs["position_ids"] = np.array(outs["position_ids"], dtype=np.int64)
|
| 1797 |
+
return outs
|
| 1798 |
+
|
| 1799 |
+
def batch_decode(self, *args, **kwargs):
|
| 1800 |
+
"""
|
| 1801 |
+
This method forwards all its arguments to Ernie4_5_VLTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 1802 |
+
refer to the docstring of this method for more information.
|
| 1803 |
+
"""
|
| 1804 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 1805 |
+
|
| 1806 |
+
def decode(self, *args, **kwargs):
|
| 1807 |
+
"""
|
| 1808 |
+
This method forwards all its arguments to Ernie4_5_VLTokenizer's [`~PreTrainedTokenizer.decode`].
|
| 1809 |
+
Please refer to the docstring of this method for more information.
|
| 1810 |
+
"""
|
| 1811 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 1812 |
+
|
| 1813 |
+
@property
|
| 1814 |
+
def model_input_names(self):
|
| 1815 |
+
"""get model input names"""
|
| 1816 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 1817 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 1818 |
+
return list(tokenizer_input_names) + list(image_processor_input_names)
|
| 1819 |
+
|
| 1820 |
+
|
| 1821 |
+
__all__ = ["Ernie4_5_VLTokenizer", "Ernie4_5_VLImageProcessor", "Ernie4_5_VLProcessor"]
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "<|end_of_sentence|>", "pad_token": "<unk>", "cls_token": "<|begin_of_sentence|>", "mask_token": "<mask:1>", "sys_start_token": "<mask:4>", "sys_end_token": "<mask:5>", "header_start_token": "<mask:6>", "header_end_token": "<mask:7>", "additional_special_tokens": ["<|IMAGE_PLACEHOLDER|>", "<|AUDIO_PLACEHOLDER|>", "<|LOC_0|>", "<|LOC_1|>", "<|LOC_2|>", "<|LOC_3|>", "<|LOC_4|>", "<|LOC_5|>", "<|LOC_6|>", "<|LOC_7|>", "<|LOC_8|>", "<|LOC_9|>", "<|LOC_10|>", "<|LOC_11|>", "<|LOC_12|>", "<|LOC_13|>", "<|LOC_14|>", "<|LOC_15|>", "<|LOC_16|>", "<|LOC_17|>", "<|LOC_18|>", "<|LOC_19|>", "<|LOC_20|>", "<|LOC_21|>", "<|LOC_22|>", "<|LOC_23|>", "<|LOC_24|>", "<|LOC_25|>", "<|LOC_26|>", "<|LOC_27|>", "<|LOC_28|>", "<|LOC_29|>", "<|LOC_30|>", "<|LOC_31|>", "<|LOC_32|>", "<|LOC_33|>", "<|LOC_34|>", "<|LOC_35|>", "<|LOC_36|>", "<|LOC_37|>", "<|LOC_38|>", "<|LOC_39|>", "<|LOC_40|>", "<|LOC_41|>", "<|LOC_42|>", "<|LOC_43|>", "<|LOC_44|>", "<|LOC_45|>", "<|LOC_46|>", "<|LOC_47|>", "<|LOC_48|>", "<|LOC_49|>", "<|LOC_50|>", "<|LOC_51|>", "<|LOC_52|>", "<|LOC_53|>", "<|LOC_54|>", "<|LOC_55|>", "<|LOC_56|>", "<|LOC_57|>", "<|LOC_58|>", "<|LOC_59|>", "<|LOC_60|>", "<|LOC_61|>", "<|LOC_62|>", "<|LOC_63|>", "<|LOC_64|>", "<|LOC_65|>", "<|LOC_66|>", "<|LOC_67|>", "<|LOC_68|>", "<|LOC_69|>", "<|LOC_70|>", "<|LOC_71|>", "<|LOC_72|>", "<|LOC_73|>", "<|LOC_74|>", "<|LOC_75|>", "<|LOC_76|>", "<|LOC_77|>", "<|LOC_78|>", "<|LOC_79|>", "<|LOC_80|>", "<|LOC_81|>", "<|LOC_82|>", "<|LOC_83|>", "<|LOC_84|>", "<|LOC_85|>", "<|LOC_86|>", "<|LOC_87|>", "<|LOC_88|>", "<|LOC_89|>", "<|LOC_90|>", "<|LOC_91|>", "<|LOC_92|>", "<|LOC_93|>", "<|LOC_94|>", "<|LOC_95|>", "<|LOC_96|>", "<|LOC_97|>", "<|LOC_98|>", "<|LOC_99|>", "<|LOC_100|>", "<|LOC_101|>", "<|LOC_102|>", "<|LOC_103|>", "<|LOC_104|>", "<|LOC_105|>", "<|LOC_106|>", "<|LOC_107|>", "<|LOC_108|>", "<|LOC_109|>", "<|LOC_110|>", "<|LOC_111|>", "<|LOC_112|>", "<|LOC_113|>", "<|LOC_114|>", "<|LOC_115|>", "<|LOC_116|>", "<|LOC_117|>", "<|LOC_118|>", "<|LOC_119|>", "<|LOC_120|>", "<|LOC_121|>", "<|LOC_122|>", "<|LOC_123|>", "<|LOC_124|>", "<|LOC_125|>", "<|LOC_126|>", "<|LOC_127|>", "<|LOC_128|>", "<|LOC_129|>", "<|LOC_130|>", "<|LOC_131|>", "<|LOC_132|>", "<|LOC_133|>", "<|LOC_134|>", "<|LOC_135|>", "<|LOC_136|>", "<|LOC_137|>", "<|LOC_138|>", "<|LOC_139|>", "<|LOC_140|>", "<|LOC_141|>", "<|LOC_142|>", "<|LOC_143|>", "<|LOC_144|>", "<|LOC_145|>", "<|LOC_146|>", "<|LOC_147|>", "<|LOC_148|>", "<|LOC_149|>", "<|LOC_150|>", "<|LOC_151|>", "<|LOC_152|>", "<|LOC_153|>", "<|LOC_154|>", "<|LOC_155|>", "<|LOC_156|>", "<|LOC_157|>", "<|LOC_158|>", "<|LOC_159|>", "<|LOC_160|>", "<|LOC_161|>", "<|LOC_162|>", "<|LOC_163|>", "<|LOC_164|>", "<|LOC_165|>", "<|LOC_166|>", "<|LOC_167|>", "<|LOC_168|>", "<|LOC_169|>", "<|LOC_170|>", "<|LOC_171|>", "<|LOC_172|>", "<|LOC_173|>", "<|LOC_174|>", "<|LOC_175|>", "<|LOC_176|>", "<|LOC_177|>", "<|LOC_178|>", "<|LOC_179|>", "<|LOC_180|>", "<|LOC_181|>", "<|LOC_182|>", "<|LOC_183|>", "<|LOC_184|>", "<|LOC_185|>", "<|LOC_186|>", "<|LOC_187|>", "<|LOC_188|>", "<|LOC_189|>", "<|LOC_190|>", "<|LOC_191|>", "<|LOC_192|>", "<|LOC_193|>", "<|LOC_194|>", "<|LOC_195|>", "<|LOC_196|>", "<|LOC_197|>", "<|LOC_198|>", "<|LOC_199|>", "<|LOC_200|>", "<|LOC_201|>", "<|LOC_202|>", "<|LOC_203|>", "<|LOC_204|>", "<|LOC_205|>", "<|LOC_206|>", "<|LOC_207|>", "<|LOC_208|>", "<|LOC_209|>", "<|LOC_210|>", "<|LOC_211|>", "<|LOC_212|>", "<|LOC_213|>", "<|LOC_214|>", "<|LOC_215|>", "<|LOC_216|>", "<|LOC_217|>", "<|LOC_218|>", "<|LOC_219|>", "<|LOC_220|>", "<|LOC_221|>", "<|LOC_222|>", "<|LOC_223|>", "<|LOC_224|>", "<|LOC_225|>", "<|LOC_226|>", "<|LOC_227|>", "<|LOC_228|>", "<|LOC_229|>", "<|LOC_230|>", "<|LOC_231|>", "<|LOC_232|>", "<|LOC_233|>", "<|LOC_234|>", "<|LOC_235|>", "<|LOC_236|>", "<|LOC_237|>", "<|LOC_238|>", "<|LOC_239|>", "<|LOC_240|>", "<|LOC_241|>", "<|LOC_242|>", "<|LOC_243|>", "<|LOC_244|>", "<|LOC_245|>", "<|LOC_246|>", "<|LOC_247|>", "<|LOC_248|>", "<|LOC_249|>", "<|LOC_250|>", "<|LOC_251|>", "<|LOC_252|>", "<|LOC_253|>", "<|LOC_254|>", "<|LOC_255|>", "<|LOC_256|>", "<|LOC_257|>", "<|LOC_258|>", "<|LOC_259|>", "<|LOC_260|>", "<|LOC_261|>", "<|LOC_262|>", "<|LOC_263|>", "<|LOC_264|>", "<|LOC_265|>", "<|LOC_266|>", "<|LOC_267|>", "<|LOC_268|>", "<|LOC_269|>", "<|LOC_270|>", "<|LOC_271|>", "<|LOC_272|>", "<|LOC_273|>", "<|LOC_274|>", "<|LOC_275|>", "<|LOC_276|>", "<|LOC_277|>", "<|LOC_278|>", "<|LOC_279|>", "<|LOC_280|>", "<|LOC_281|>", "<|LOC_282|>", "<|LOC_283|>", "<|LOC_284|>", "<|LOC_285|>", "<|LOC_286|>", "<|LOC_287|>", "<|LOC_288|>", "<|LOC_289|>", "<|LOC_290|>", "<|LOC_291|>", "<|LOC_292|>", "<|LOC_293|>", "<|LOC_294|>", "<|LOC_295|>", "<|LOC_296|>", "<|LOC_297|>", "<|LOC_298|>", "<|LOC_299|>", "<|LOC_300|>", "<|LOC_301|>", "<|LOC_302|>", "<|LOC_303|>", "<|LOC_304|>", "<|LOC_305|>", "<|LOC_306|>", "<|LOC_307|>", "<|LOC_308|>", "<|LOC_309|>", "<|LOC_310|>", "<|LOC_311|>", "<|LOC_312|>", "<|LOC_313|>", "<|LOC_314|>", "<|LOC_315|>", "<|LOC_316|>", "<|LOC_317|>", "<|LOC_318|>", "<|LOC_319|>", "<|LOC_320|>", "<|LOC_321|>", "<|LOC_322|>", "<|LOC_323|>", "<|LOC_324|>", "<|LOC_325|>", "<|LOC_326|>", "<|LOC_327|>", "<|LOC_328|>", "<|LOC_329|>", "<|LOC_330|>", "<|LOC_331|>", "<|LOC_332|>", "<|LOC_333|>", "<|LOC_334|>", "<|LOC_335|>", "<|LOC_336|>", "<|LOC_337|>", "<|LOC_338|>", "<|LOC_339|>", "<|LOC_340|>", "<|LOC_341|>", "<|LOC_342|>", "<|LOC_343|>", "<|LOC_344|>", "<|LOC_345|>", "<|LOC_346|>", "<|LOC_347|>", "<|LOC_348|>", "<|LOC_349|>", "<|LOC_350|>", "<|LOC_351|>", "<|LOC_352|>", "<|LOC_353|>", "<|LOC_354|>", "<|LOC_355|>", "<|LOC_356|>", "<|LOC_357|>", "<|LOC_358|>", "<|LOC_359|>", "<|LOC_360|>", "<|LOC_361|>", "<|LOC_362|>", "<|LOC_363|>", "<|LOC_364|>", "<|LOC_365|>", "<|LOC_366|>", "<|LOC_367|>", "<|LOC_368|>", "<|LOC_369|>", "<|LOC_370|>", "<|LOC_371|>", "<|LOC_372|>", "<|LOC_373|>", "<|LOC_374|>", "<|LOC_375|>", "<|LOC_376|>", "<|LOC_377|>", "<|LOC_378|>", "<|LOC_379|>", "<|LOC_380|>", "<|LOC_381|>", "<|LOC_382|>", "<|LOC_383|>", "<|LOC_384|>", "<|LOC_385|>", "<|LOC_386|>", "<|LOC_387|>", "<|LOC_388|>", "<|LOC_389|>", "<|LOC_390|>", "<|LOC_391|>", "<|LOC_392|>", "<|LOC_393|>", "<|LOC_394|>", "<|LOC_395|>", "<|LOC_396|>", "<|LOC_397|>", "<|LOC_398|>", "<|LOC_399|>", "<|LOC_400|>", "<|LOC_401|>", "<|LOC_402|>", "<|LOC_403|>", "<|LOC_404|>", "<|LOC_405|>", "<|LOC_406|>", "<|LOC_407|>", "<|LOC_408|>", "<|LOC_409|>", "<|LOC_410|>", "<|LOC_411|>", "<|LOC_412|>", "<|LOC_413|>", "<|LOC_414|>", "<|LOC_415|>", "<|LOC_416|>", "<|LOC_417|>", "<|LOC_418|>", "<|LOC_419|>", "<|LOC_420|>", "<|LOC_421|>", "<|LOC_422|>", "<|LOC_423|>", "<|LOC_424|>", "<|LOC_425|>", "<|LOC_426|>", "<|LOC_427|>", "<|LOC_428|>", "<|LOC_429|>", "<|LOC_430|>", "<|LOC_431|>", "<|LOC_432|>", "<|LOC_433|>", "<|LOC_434|>", "<|LOC_435|>", "<|LOC_436|>", "<|LOC_437|>", "<|LOC_438|>", "<|LOC_439|>", "<|LOC_440|>", "<|LOC_441|>", "<|LOC_442|>", "<|LOC_443|>", "<|LOC_444|>", "<|LOC_445|>", "<|LOC_446|>", "<|LOC_447|>", "<|LOC_448|>", "<|LOC_449|>", "<|LOC_450|>", "<|LOC_451|>", "<|LOC_452|>", "<|LOC_453|>", "<|LOC_454|>", "<|LOC_455|>", "<|LOC_456|>", "<|LOC_457|>", "<|LOC_458|>", "<|LOC_459|>", "<|LOC_460|>", "<|LOC_461|>", "<|LOC_462|>", "<|LOC_463|>", "<|LOC_464|>", "<|LOC_465|>", "<|LOC_466|>", "<|LOC_467|>", "<|LOC_468|>", "<|LOC_469|>", "<|LOC_470|>", "<|LOC_471|>", "<|LOC_472|>", "<|LOC_473|>", "<|LOC_474|>", "<|LOC_475|>", "<|LOC_476|>", "<|LOC_477|>", "<|LOC_478|>", "<|LOC_479|>", "<|LOC_480|>", "<|LOC_481|>", "<|LOC_482|>", "<|LOC_483|>", "<|LOC_484|>", "<|LOC_485|>", "<|LOC_486|>", "<|LOC_487|>", "<|LOC_488|>", "<|LOC_489|>", "<|LOC_490|>", "<|LOC_491|>", "<|LOC_492|>", "<|LOC_493|>", "<|LOC_494|>", "<|LOC_495|>", "<|LOC_496|>", "<|LOC_497|>", "<|LOC_498|>", "<|LOC_499|>", "<|LOC_500|>", "<|LOC_501|>", "<|LOC_502|>", "<|LOC_503|>", "<|LOC_504|>", "<|LOC_505|>", "<|LOC_506|>", "<|LOC_507|>", "<|LOC_508|>", "<|LOC_509|>", "<|LOC_510|>", "<|LOC_511|>", "<|LOC_512|>", "<|LOC_513|>", "<|LOC_514|>", "<|LOC_515|>", "<|LOC_516|>", "<|LOC_517|>", "<|LOC_518|>", "<|LOC_519|>", "<|LOC_520|>", "<|LOC_521|>", "<|LOC_522|>", "<|LOC_523|>", "<|LOC_524|>", "<|LOC_525|>", "<|LOC_526|>", "<|LOC_527|>", "<|LOC_528|>", "<|LOC_529|>", "<|LOC_530|>", "<|LOC_531|>", "<|LOC_532|>", "<|LOC_533|>", "<|LOC_534|>", "<|LOC_535|>", "<|LOC_536|>", "<|LOC_537|>", "<|LOC_538|>", "<|LOC_539|>", "<|LOC_540|>", "<|LOC_541|>", "<|LOC_542|>", "<|LOC_543|>", "<|LOC_544|>", "<|LOC_545|>", "<|LOC_546|>", "<|LOC_547|>", "<|LOC_548|>", "<|LOC_549|>", "<|LOC_550|>", "<|LOC_551|>", "<|LOC_552|>", "<|LOC_553|>", "<|LOC_554|>", "<|LOC_555|>", "<|LOC_556|>", "<|LOC_557|>", "<|LOC_558|>", "<|LOC_559|>", "<|LOC_560|>", "<|LOC_561|>", "<|LOC_562|>", "<|LOC_563|>", "<|LOC_564|>", "<|LOC_565|>", "<|LOC_566|>", "<|LOC_567|>", "<|LOC_568|>", "<|LOC_569|>", "<|LOC_570|>", "<|LOC_571|>", "<|LOC_572|>", "<|LOC_573|>", "<|LOC_574|>", "<|LOC_575|>", "<|LOC_576|>", "<|LOC_577|>", "<|LOC_578|>", "<|LOC_579|>", "<|LOC_580|>", "<|LOC_581|>", "<|LOC_582|>", "<|LOC_583|>", "<|LOC_584|>", "<|LOC_585|>", "<|LOC_586|>", "<|LOC_587|>", "<|LOC_588|>", "<|LOC_589|>", "<|LOC_590|>", "<|LOC_591|>", "<|LOC_592|>", "<|LOC_593|>", "<|LOC_594|>", "<|LOC_595|>", "<|LOC_596|>", "<|LOC_597|>", "<|LOC_598|>", "<|LOC_599|>", "<|LOC_600|>", "<|LOC_601|>", "<|LOC_602|>", "<|LOC_603|>", "<|LOC_604|>", "<|LOC_605|>", "<|LOC_606|>", "<|LOC_607|>", "<|LOC_608|>", "<|LOC_609|>", "<|LOC_610|>", "<|LOC_611|>", "<|LOC_612|>", "<|LOC_613|>", "<|LOC_614|>", "<|LOC_615|>", "<|LOC_616|>", "<|LOC_617|>", "<|LOC_618|>", "<|LOC_619|>", "<|LOC_620|>", "<|LOC_621|>", "<|LOC_622|>", "<|LOC_623|>", "<|LOC_624|>", "<|LOC_625|>", "<|LOC_626|>", "<|LOC_627|>", "<|LOC_628|>", "<|LOC_629|>", "<|LOC_630|>", "<|LOC_631|>", "<|LOC_632|>", "<|LOC_633|>", "<|LOC_634|>", "<|LOC_635|>", "<|LOC_636|>", "<|LOC_637|>", "<|LOC_638|>", "<|LOC_639|>", "<|LOC_640|>", "<|LOC_641|>", "<|LOC_642|>", "<|LOC_643|>", "<|LOC_644|>", "<|LOC_645|>", "<|LOC_646|>", "<|LOC_647|>", "<|LOC_648|>", "<|LOC_649|>", "<|LOC_650|>", "<|LOC_651|>", "<|LOC_652|>", "<|LOC_653|>", "<|LOC_654|>", "<|LOC_655|>", "<|LOC_656|>", "<|LOC_657|>", "<|LOC_658|>", "<|LOC_659|>", "<|LOC_660|>", "<|LOC_661|>", "<|LOC_662|>", "<|LOC_663|>", "<|LOC_664|>", "<|LOC_665|>", "<|LOC_666|>", "<|LOC_667|>", "<|LOC_668|>", "<|LOC_669|>", "<|LOC_670|>", "<|LOC_671|>", "<|LOC_672|>", "<|LOC_673|>", "<|LOC_674|>", "<|LOC_675|>", "<|LOC_676|>", "<|LOC_677|>", "<|LOC_678|>", "<|LOC_679|>", "<|LOC_680|>", "<|LOC_681|>", "<|LOC_682|>", "<|LOC_683|>", "<|LOC_684|>", "<|LOC_685|>", "<|LOC_686|>", "<|LOC_687|>", "<|LOC_688|>", "<|LOC_689|>", "<|LOC_690|>", "<|LOC_691|>", "<|LOC_692|>", "<|LOC_693|>", "<|LOC_694|>", "<|LOC_695|>", "<|LOC_696|>", "<|LOC_697|>", "<|LOC_698|>", "<|LOC_699|>", "<|LOC_700|>", "<|LOC_701|>", "<|LOC_702|>", "<|LOC_703|>", "<|LOC_704|>", "<|LOC_705|>", "<|LOC_706|>", "<|LOC_707|>", "<|LOC_708|>", "<|LOC_709|>", "<|LOC_710|>", "<|LOC_711|>", "<|LOC_712|>", "<|LOC_713|>", "<|LOC_714|>", "<|LOC_715|>", "<|LOC_716|>", "<|LOC_717|>", "<|LOC_718|>", "<|LOC_719|>", "<|LOC_720|>", "<|LOC_721|>", "<|LOC_722|>", "<|LOC_723|>", "<|LOC_724|>", "<|LOC_725|>", "<|LOC_726|>", "<|LOC_727|>", "<|LOC_728|>", "<|LOC_729|>", "<|LOC_730|>", "<|LOC_731|>", "<|LOC_732|>", "<|LOC_733|>", "<|LOC_734|>", "<|LOC_735|>", "<|LOC_736|>", "<|LOC_737|>", "<|LOC_738|>", "<|LOC_739|>", "<|LOC_740|>", "<|LOC_741|>", "<|LOC_742|>", "<|LOC_743|>", "<|LOC_744|>", "<|LOC_745|>", "<|LOC_746|>", "<|LOC_747|>", "<|LOC_748|>", "<|LOC_749|>", "<|LOC_750|>", "<|LOC_751|>", "<|LOC_752|>", "<|LOC_753|>", "<|LOC_754|>", "<|LOC_755|>", "<|LOC_756|>", "<|LOC_757|>", "<|LOC_758|>", "<|LOC_759|>", "<|LOC_760|>", "<|LOC_761|>", "<|LOC_762|>", "<|LOC_763|>", "<|LOC_764|>", "<|LOC_765|>", "<|LOC_766|>", "<|LOC_767|>", "<|LOC_768|>", "<|LOC_769|>", "<|LOC_770|>", "<|LOC_771|>", "<|LOC_772|>", "<|LOC_773|>", "<|LOC_774|>", "<|LOC_775|>", "<|LOC_776|>", "<|LOC_777|>", "<|LOC_778|>", "<|LOC_779|>", "<|LOC_780|>", "<|LOC_781|>", "<|LOC_782|>", "<|LOC_783|>", "<|LOC_784|>", "<|LOC_785|>", "<|LOC_786|>", "<|LOC_787|>", "<|LOC_788|>", "<|LOC_789|>", "<|LOC_790|>", "<|LOC_791|>", "<|LOC_792|>", "<|LOC_793|>", "<|LOC_794|>", "<|LOC_795|>", "<|LOC_796|>", "<|LOC_797|>", "<|LOC_798|>", "<|LOC_799|>", "<|LOC_800|>", "<|LOC_801|>", "<|LOC_802|>", "<|LOC_803|>", "<|LOC_804|>", "<|LOC_805|>", "<|LOC_806|>", "<|LOC_807|>", "<|LOC_808|>", "<|LOC_809|>", "<|LOC_810|>", "<|LOC_811|>", "<|LOC_812|>", "<|LOC_813|>", "<|LOC_814|>", "<|LOC_815|>", "<|LOC_816|>", "<|LOC_817|>", "<|LOC_818|>", "<|LOC_819|>", "<|LOC_820|>", "<|LOC_821|>", "<|LOC_822|>", "<|LOC_823|>", "<|LOC_824|>", "<|LOC_825|>", "<|LOC_826|>", "<|LOC_827|>", "<|LOC_828|>", "<|LOC_829|>", "<|LOC_830|>", "<|LOC_831|>", "<|LOC_832|>", "<|LOC_833|>", "<|LOC_834|>", "<|LOC_835|>", "<|LOC_836|>", "<|LOC_837|>", "<|LOC_838|>", "<|LOC_839|>", "<|LOC_840|>", "<|LOC_841|>", "<|LOC_842|>", "<|LOC_843|>", "<|LOC_844|>", "<|LOC_845|>", "<|LOC_846|>", "<|LOC_847|>", "<|LOC_848|>", "<|LOC_849|>", "<|LOC_850|>", "<|LOC_851|>", "<|LOC_852|>", "<|LOC_853|>", "<|LOC_854|>", "<|LOC_855|>", "<|LOC_856|>", "<|LOC_857|>", "<|LOC_858|>", "<|LOC_859|>", "<|LOC_860|>", "<|LOC_861|>", "<|LOC_862|>", "<|LOC_863|>", "<|LOC_864|>", "<|LOC_865|>", "<|LOC_866|>", "<|LOC_867|>", "<|LOC_868|>", "<|LOC_869|>", "<|LOC_870|>", "<|LOC_871|>", "<|LOC_872|>", "<|LOC_873|>", "<|LOC_874|>", "<|LOC_875|>", "<|LOC_876|>", "<|LOC_877|>", "<|LOC_878|>", "<|LOC_879|>", "<|LOC_880|>", "<|LOC_881|>", "<|LOC_882|>", "<|LOC_883|>", "<|LOC_884|>", "<|LOC_885|>", "<|LOC_886|>", "<|LOC_887|>", "<|LOC_888|>", "<|LOC_889|>", "<|LOC_890|>", "<|LOC_891|>", "<|LOC_892|>", "<|LOC_893|>", "<|LOC_894|>", "<|LOC_895|>", "<|LOC_896|>", "<|LOC_897|>", "<|LOC_898|>", "<|LOC_899|>", "<|LOC_900|>", "<|LOC_901|>", "<|LOC_902|>", "<|LOC_903|>", "<|LOC_904|>", "<|LOC_905|>", "<|LOC_906|>", "<|LOC_907|>", "<|LOC_908|>", "<|LOC_909|>", "<|LOC_910|>", "<|LOC_911|>", "<|LOC_912|>", "<|LOC_913|>", "<|LOC_914|>", "<|LOC_915|>", "<|LOC_916|>", "<|LOC_917|>", "<|LOC_918|>", "<|LOC_919|>", "<|LOC_920|>", "<|LOC_921|>", "<|LOC_922|>", "<|LOC_923|>", "<|LOC_924|>", "<|LOC_925|>", "<|LOC_926|>", "<|LOC_927|>", "<|LOC_928|>", "<|LOC_929|>", "<|LOC_930|>", "<|LOC_931|>", "<|LOC_932|>", "<|LOC_933|>", "<|LOC_934|>", "<|LOC_935|>", "<|LOC_936|>", "<|LOC_937|>", "<|LOC_938|>", "<|LOC_939|>", "<|LOC_940|>", "<|LOC_941|>", "<|LOC_942|>", "<|LOC_943|>", "<|LOC_944|>", "<|LOC_945|>", "<|LOC_946|>", "<|LOC_947|>", "<|LOC_948|>", "<|LOC_949|>", "<|LOC_950|>", "<|LOC_951|>", "<|LOC_952|>", "<|LOC_953|>", "<|LOC_954|>", "<|LOC_955|>", "<|LOC_956|>", "<|LOC_957|>", "<|LOC_958|>", "<|LOC_959|>", "<|LOC_960|>", "<|LOC_961|>", "<|LOC_962|>", "<|LOC_963|>", "<|LOC_964|>", "<|LOC_965|>", "<|LOC_966|>", "<|LOC_967|>", "<|LOC_968|>", "<|LOC_969|>", "<|LOC_970|>", "<|LOC_971|>", "<|LOC_972|>", "<|LOC_973|>", "<|LOC_974|>", "<|LOC_975|>", "<|LOC_976|>", "<|LOC_977|>", "<|LOC_978|>", "<|LOC_979|>", "<|LOC_980|>", "<|LOC_981|>", "<|LOC_982|>", "<|LOC_983|>", "<|LOC_984|>", "<|LOC_985|>", "<|LOC_986|>", "<|LOC_987|>", "<|LOC_988|>", "<|LOC_989|>", "<|LOC_990|>", "<|LOC_991|>", "<|LOC_992|>", "<|LOC_993|>", "<|LOC_994|>", "<|LOC_995|>", "<|LOC_996|>", "<|LOC_997|>", "<|LOC_998|>", "<|LOC_999|>", "<|LOC_1000|>", "<|LOC_BEGIN|>", "<|LOC_END|>", "<|LOC_SEP|>", "<|CROP_COL_SEP|>", "<|CROP_ROW_SEP|>", "<|IMAGE_SEP|>", "<|IMAGE_START|>", "<|IMAGE_END|>", "<|VIDEO_START|>", "<|VIDEO_END|>", "<|ASR_START|>", "<|ASR_END|>"]}
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:964f353bd1d5dba660a795b8fda8b4fe3ce847be2fa9ec5c1f670fbee4da3faf
|
| 3 |
+
size 1614375
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"eos_token": "</s>",
|
| 4 |
+
"pad_token": "<unk>",
|
| 5 |
+
"unk_token": "<unk>",
|
| 6 |
+
"cls_token": "<|begin_of_sentence|>",
|
| 7 |
+
"sep_token": "<|end_of_sentence|>",
|
| 8 |
+
"mask_token": "<mask:1>",
|
| 9 |
+
"sys_start_token": "<mask:4>",
|
| 10 |
+
"sys_end_token": "<mask:5>",
|
| 11 |
+
"header_start_token": "<mask:6>",
|
| 12 |
+
"header_end_token": "<mask:7>",
|
| 13 |
+
"additional_special_tokens": null,
|
| 14 |
+
"tokenizer_class": "Ernie4_5_VLTokenizer",
|
| 15 |
+
"auto_map": {
|
| 16 |
+
"AutoTokenizer": [
|
| 17 |
+
"processing_ernie4_5_vl.Ernie4_5_VLTokenizer",
|
| 18 |
+
null
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
"chat_template": "{%- if chat_template_kwargs is defined and chat_template_kwargs.options is defined -%}\n {%- set options = chat_template_kwargs.options -%}\n{%- endif -%}\n{#- 定义 options.thinking_mode 的默认值 -#}\n{%- if options is not defined -%}\n {%- set options = {'thinking_mode': true} -%}\n{%- endif -%}\n{%- set thinking_enabled = options.get('thinking_mode', true) in ['open', 'true', true] -%}\n{%- set image_count = namespace(value=0) -%}\n{%- set video_count = namespace(value=0) -%}\n{% macro render_content(content_list, accumulate=True, role=\"user\") %}\n {%- for content_item in content_list -%}\n {%- if content_item.type == 'text' -%}\n {{- content_item.text }}\n {%- elif content_item.type == 'image_url' -%}\n {%- if accumulate -%}\n {%- set image_count.value = image_count.value + 1 -%}\n {%- endif -%}\n {{ ' ' }}Picture{{ ' ' ~ image_count.value if accumulate else '' }}:<|IMAGE_START|><|image@placeholder|><|IMAGE_END|>\n {%- elif content_item.type == 'video_url' -%}\n {%- if accumulate -%}\n {%- set video_count.value = video_count.value + 1 -%}\n {%- endif -%}\n {{ ' ' }}Video{{ ' ' ~ video_count.value if accumulate else '' }}:<|VIDEO_START|><|video@placeholder|><|VIDEO_END|>\n {%- if content_item.video_url.subtitles is defined and content_item.video_url.subtitles -%}\n {{ ' ' }}<Start of Video ASR>: {%- for subtitle in content_item.video_url.subtitles -%}\n [{{ \"%.1f\"|format(subtitle[1]) }},{{ \"%.1f\"|format(subtitle[2]) }}]{{ subtitle[0] }}\n {%- endfor -%} <End of Video ASR>{{ ' ' }}\n {%- endif -%}\n {%- endif -%}\n {%- endfor -%}\n{% endmacro %}\n{#- ---- 定义 message 渲染 ---- -#}\n{%- macro build_messages(messages) -%}\n {#- ---- 初始化 多模态计数器 ---- -#}\n {%- for message in messages -%}\n {%- if message.content is string -%}\n {%- set content = message.content -%}\n {%- elif message.content is iterable -%}\n {%- set content = render_content(message.content, True, message.role) -%}\n {%- else -%}\n {%- set content = '' -%}\n {%- endif -%}\n {%- if (message.role == \"user\") -%}\n {{- 'User: ' + content-}}\n {%- elif (message.role == \"system\" and not loop.first) -%}\n {{- content + '\n' -}}\n {%- elif message.role == \"assistant\" -%}\n {{- '\nAssistant: ' -}}\n {%- set reasoning_content = '' -%}\n {%- if message.reasoning_content is defined and message.reasoning_content is string -%}\n {%- set reasoning_content = message.reasoning_content -%}\n {%- else -%}\n {%- if '</think>' in content -%}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') -%}\n {%- set content = content.split('</think>')[-1].lstrip('\n') -%}\n {%- endif -%}\n {%- endif -%}\n {%- if loop.last or (not loop.last and reasoning_content) -%}\n {{- '\n' + '<think>\n' -}}\n {{- reasoning_content.strip('\n') if options is defined and thinking_enabled else '' -}}\n {{- '\n</think>\n\n' -}}\n {%- endif -%}\n {%- if content|length > 0 -%}\n {{- content -}}\n {%- endif -%}\n {%- if message.tool_calls -%}\n {%- for tool_call in message.tool_calls -%}\n {%- if (not loop.first) -%}\n {{- '\n' -}}\n {%- endif -%}\n {%- if tool_call.function -%}\n {%- set tool_call = tool_call.function -%}\n {%- endif -%}\n {{- '<tool_call>\n{\"name\": \"' -}}\n {{- tool_call.name -}}\n {{- '\", \"arguments\": ' -}}\n {%- if tool_call.arguments is string -%}\n {{- tool_call.arguments -}}\n {%- else -%}\n {{- tool_call.arguments | tojson -}}\n {%- endif -%}\n {{- '}\n</tool_call>\n' -}}\n {%- endfor -%}\n {%- endif -%}\n {{- '<|end_of_sentence|>' }}\n {%- elif message.role == \"tool\" -%}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") -%}\n {{- 'User: ' -}}\n {%- endif -%}\n {{- '\n<tool_output>\n' -}}\n {{- content -}}\n {{- '\n</tool_output>\n' -}}\n {%- endif -%}\n {%- endfor -%}\n{%- endmacro -%}\n{%- if not add_generation_prompt is defined -%}\n {%- set add_generation_prompt = true -%}\n{%- endif -%}\n{{- '<|begin_of_sentence|>' -}}\n{%- if messages[0].role == 'system' -%}\n {%- if messages and messages[0].role == 'system' -%}\n {%- if messages[0].content is string -%}\n {{- messages[0].content -}}\n {%- elif messages[0].content is iterable -%}\n {%- set sys_content = render_content(messages[0].content) %}\n {{- sys_content -}}\n {%- endif -%}\n {%- endif -%}\n {{- '\n' -}}\n{%- else -%}\n {{- 'You are a multimodal AI assistant called ERNIE developed by Baidu based on the PaddlePaddle framework.\n' -}}\n{%- endif -%}\n{%- if options is defined and options.parallel_tool_calls is defined and (options.parallel_tool_calls == \"true\" or options.parallel_tool_calls == True) -%}\n {{- '\nparallel_tool_calls=True\n' -}}\n{%- endif -%}\n{%- if tools -%}\n {{- \"\n<tool_list>\" -}}\n {{- '\n' -}}\n {{- '[' -}}\n {%- for tool in tools -%}\n {{- '{\"type\": \"function\", \"function\": ' -}}\n {{- (tool.function | tojson) -}}\n {{- '}' -}}\n {%- if not loop.last -%}\n {{- ', ' -}}\n {%- endif -%}\n {%- endfor -%}\n {{- ']' -}}\n {{- \"\n</tool_list>\" -}}\n {{- '\n' -}}\n{%- endif -%}\n{{- build_messages(messages) -}}\n{%- if add_generation_prompt -%}\n {%- set append_think_label=False -%}\n {%- if not thinking_enabled -%}\n {%- set append_think_label=True -%}\n {%- endif -%}\n {{- \"\nAssistant: \n<think>\n\" -}}\n {%- if options is defined and options.tool_choice is defined -%}\n {%- if options.tool_choice.mode == \"required\" -%}\n {{- '系统要求我必须使用一个或多个工具,注意要认真填写参数,若必填参数存在信息缺失,需做出合理的假设,不可询问用户。' -}}\n {%- if not thinking_enabled -%}\n {{- '\n</think>\n\n<tool_call>\n' -}}\n {%- set append_think_label=False -%}\n {%- else -%}\n {{- '现在开始分析用户需求,' -}}\n {%- endif -%}\n {%- endif -%}\n {%- if options.tool_choice.mode == \"force\" -%}\n {{- \"系统指定必须使用\" -}}\n {{- options.tool_choice.name -}}\n {{- '工具,因此我尝试填写合适的参数满足用户需求。\n</think>\n\n<tool_call>\n{\"name\": \"' -}}\n {{- options.tool_choice.name -}}\n {{- '\", \"arguments\":' -}}\n {%- set append_think_label=False -%}\n {%- endif -%}\n {%- endif -%}\n {{- \"\n</think>\n\n\" if append_think_label else '' -}}\n{%- endif -%}"
|
| 22 |
+
}
|