--- library_name: transformers license: apache-2.0 base_model: protectai/deberta-v3-small-prompt-injection-v2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: prompt-tackler results: [] --- [Visualize in Weights & Biases](https://wandb.ai/christogoosen/prompt-tackler/runs/w2bjzmse) # prompt-tackler This model is a fine-tuned version of [protectai/deberta-v3-small-prompt-injection-v2](https://huggingface.co/protectai/deberta-v3-small-prompt-injection-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0186 - Accuracy: 0.9959 - Precision: 0.9959 - Recall: 0.9959 - F1: 0.9959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0177 | 1.0 | 20686 | 0.0222 | 0.9943 | 0.9943 | 0.9943 | 0.9943 | | 0.012 | 2.0 | 41372 | 0.0186 | 0.9959 | 0.9959 | 0.9959 | 0.9959 | | 0.0084 | 3.0 | 62058 | 0.0278 | 0.9955 | 0.9955 | 0.9955 | 0.9955 | | 0.0216 | 4.0 | 82744 | 0.0256 | 0.9959 | 0.9959 | 0.9959 | 0.9959 | | 0.0038 | 5.0 | 103430 | 0.0327 | 0.9963 | 0.9963 | 0.9963 | 0.9963 | | 0.0 | 6.0 | 124116 | 0.0383 | 0.9963 | 0.9963 | 0.9963 | 0.9963 | ### Framework versions - Transformers 4.53.3 - Pytorch 2.9.1+cu128 - Datasets 2.21.0 - Tokenizers 0.21.4