Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- other
|
| 5 |
+
tags:
|
| 6 |
+
- pathfinding
|
| 7 |
+
- gpu-computing
|
| 8 |
+
- benchmark
|
| 9 |
+
- neuromorphic
|
| 10 |
+
- navigation
|
| 11 |
+
- eikonal-equation
|
| 12 |
+
- robotics
|
| 13 |
+
- real-time
|
| 14 |
+
size_categories:
|
| 15 |
+
- n<1K
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Optical Neuromorphic Eikonal Solver - Benchmark Datasets
|
| 19 |
+
|
| 20 |
+
## Overview
|
| 21 |
+
|
| 22 |
+
Benchmark datasets for evaluating the **Optical Neuromorphic Eikonal Solver**, a GPU-accelerated pathfinding algorithm achieving **30-300ร speedup** over CPU Dijkstra.
|
| 23 |
+
|
| 24 |
+
## ๐ฏ Key Results
|
| 25 |
+
|
| 26 |
+
- **134.9ร average speedup** vs CPU Dijkstra
|
| 27 |
+
- **0.64% mean error** (sub-1% accuracy)
|
| 28 |
+
- **1.025ร path length** (near-optimal paths)
|
| 29 |
+
- **2-4ms per query** on 512ร512 grids
|
| 30 |
+
|
| 31 |
+
## ๐ Dataset Content
|
| 32 |
+
|
| 33 |
+
5 synthetic pathfinding test cases covering diverse scenarios:
|
| 34 |
+
|
| 35 |
+
| File | Grid Size | Cells | Obstacles | Speed Field | Difficulty |
|
| 36 |
+
|------|-----------|-------|-----------|-------------|------------|
|
| 37 |
+
| sparse_128.npz | 128ร128 | 16,384 | 10% | Uniform | Easy |
|
| 38 |
+
| medium_256.npz | 256ร256 | 65,536 | 20% | Uniform | Medium |
|
| 39 |
+
| gradient_256.npz | 256ร256 | 65,536 | 20% | Gradient | Medium |
|
| 40 |
+
| maze_511.npz | 511ร511 | 261,121 | 30% (maze) | Uniform | Hard |
|
| 41 |
+
| complex_512.npz | 512ร512 | 262,144 | 30% | Random | Hard |
|
| 42 |
+
|
| 43 |
+
Plus: `benchmark_results.csv` with performance metrics
|
| 44 |
+
|
| 45 |
+
## ๐ Format
|
| 46 |
+
|
| 47 |
+
Each `.npz` file contains:
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
{
|
| 51 |
+
'obstacles': np.ndarray, # (H,W) float32, 1.0=blocked, 0.0=free
|
| 52 |
+
'speeds': np.ndarray, # (H,W) float32, propagation speed
|
| 53 |
+
'source': np.ndarray, # (2,) int32, [x,y] start coordinates
|
| 54 |
+
'target': np.ndarray, # (2,) int32, [x,y] goal coordinates
|
| 55 |
+
'metadata': str # JSON with provenance info
|
| 56 |
+
}
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
## ๐ง Loading Data
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
import numpy as np
|
| 63 |
+
from huggingface_hub import hf_hub_download
|
| 64 |
+
|
| 65 |
+
# Download dataset
|
| 66 |
+
file_path = hf_hub_download(
|
| 67 |
+
repo_id="Agnuxo/optical-neuromorphic-eikonal-benchmarks",
|
| 68 |
+
filename="maze_511.npz",
|
| 69 |
+
repo_type="dataset"
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Load
|
| 73 |
+
data = np.load(file_path, allow_pickle=True)
|
| 74 |
+
obstacles = data['obstacles']
|
| 75 |
+
speeds = data['speeds']
|
| 76 |
+
source = tuple(data['source'])
|
| 77 |
+
target = tuple(data['target'])
|
| 78 |
+
|
| 79 |
+
print(f"Grid: {obstacles.shape}")
|
| 80 |
+
print(f"Start: {source}, Goal: {target}")
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
## ๐ฎ Interactive Demo
|
| 84 |
+
|
| 85 |
+
Try the interactive pathfinding demo: [Space Link](https://huggingface.co/spaces/Agnuxo/optical-neuromorphic-pathfinding-demo)
|
| 86 |
+
|
| 87 |
+
## ๐ Paper & Code
|
| 88 |
+
|
| 89 |
+
- **Paper**: [GitHub](https://github.com/Agnuxo1/optical-neuromorphic-eikonal-solver)
|
| 90 |
+
- **Code**: [GitHub Repository](https://github.com/Agnuxo1/optical-neuromorphic-eikonal-solver)
|
| 91 |
+
- **Author**: [Francisco Angulo de Lafuente](https://huggingface.co/Agnuxo)
|
| 92 |
+
|
| 93 |
+
## ๐ Citation
|
| 94 |
+
|
| 95 |
+
```bibtex
|
| 96 |
+
@misc{angulo2025optical,
|
| 97 |
+
title={Optical Neuromorphic Eikonal Solver Benchmark Datasets},
|
| 98 |
+
author={Angulo de Lafuente, Francisco},
|
| 99 |
+
year={2025},
|
| 100 |
+
publisher={Hugging Face},
|
| 101 |
+
url={https://huggingface.co/datasets/Agnuxo/optical-neuromorphic-eikonal-benchmarks}
|
| 102 |
+
}
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
## ๐ License
|
| 106 |
+
|
| 107 |
+
CC BY 4.0 (Creative Commons Attribution 4.0 International)
|
| 108 |
+
|
| 109 |
+
## ๐ Links
|
| 110 |
+
|
| 111 |
+
- Code: https://github.com/Agnuxo1/optical-neuromorphic-eikonal-solver
|
| 112 |
+
- Kaggle: https://www.kaggle.com/franciscoangulo
|
| 113 |
+
- ResearchGate: https://www.researchgate.net/profile/Francisco-Angulo-Lafuente-3
|