|
|
|
|
|
|
|
|
|
|
|
import itertools |
|
|
import unittest |
|
|
|
|
|
import numpy as np |
|
|
import parameterized |
|
|
import torch |
|
|
|
|
|
from tests.common import onnx_script_test_case |
|
|
from tests.models import signal_dft |
|
|
|
|
|
|
|
|
def _fft(x, fft_length, axis=-1): |
|
|
ft = np.fft.fft(x, fft_length[0], axis=axis) |
|
|
r = np.real(ft) |
|
|
i = np.imag(ft) |
|
|
merged = np.vstack([r[np.newaxis, ...], i[np.newaxis, ...]]) |
|
|
perm = np.arange(len(merged.shape)) |
|
|
perm[:-1] = perm[1:] |
|
|
perm[-1] = 0 |
|
|
tr = np.transpose(merged, list(perm)) |
|
|
if tr.shape[-1] != 2: |
|
|
raise AssertionError( |
|
|
f"Unexpected shape {tr.shape}, x.shape={x.shape} fft_length={fft_length}." |
|
|
) |
|
|
return tr |
|
|
|
|
|
|
|
|
def _cifft(x, fft_length, axis=-1): |
|
|
slices = [slice(0, x) for x in x.shape] |
|
|
slices[-1] = slice(0, x.shape[-1], 2) |
|
|
real = x[tuple(slices)] |
|
|
slices[-1] = slice(1, x.shape[-1], 2) |
|
|
imag = x[tuple(slices)] |
|
|
c = np.squeeze(real + 1j * imag, -1) |
|
|
return _ifft(c, fft_length, axis=axis) |
|
|
|
|
|
|
|
|
def _ifft(x, fft_length, axis=-1): |
|
|
ft = np.fft.ifft(x, fft_length[0], axis=axis) |
|
|
r = np.real(ft) |
|
|
i = np.imag(ft) |
|
|
merged = np.vstack([r[np.newaxis, ...], i[np.newaxis, ...]]) |
|
|
perm = np.arange(len(merged.shape)) |
|
|
perm[:-1] = perm[1:] |
|
|
perm[-1] = 0 |
|
|
tr = np.transpose(merged, list(perm)) |
|
|
if tr.shape[-1] != 2: |
|
|
raise AssertionError( |
|
|
f"Unexpected shape {tr.shape}, x.shape={x.shape} fft_length={fft_length}." |
|
|
) |
|
|
return tr |
|
|
|
|
|
|
|
|
def _cfft(x, fft_length, axis=-1): |
|
|
slices = [slice(0, x) for x in x.shape] |
|
|
slices[-1] = slice(0, x.shape[-1], 2) |
|
|
real = x[tuple(slices)] |
|
|
slices[-1] = slice(1, x.shape[-1], 2) |
|
|
imag = x[tuple(slices)] |
|
|
c = np.squeeze(real + 1j * imag, -1) |
|
|
return _fft(c, fft_length, axis=axis) |
|
|
|
|
|
|
|
|
def _complex2float(c): |
|
|
real = np.real(c) |
|
|
imag = np.imag(c) |
|
|
x = np.vstack([real[np.newaxis, ...], imag[np.newaxis, ...]]) |
|
|
perm = list(range(len(x.shape))) |
|
|
perm[:-1] = perm[1:] |
|
|
perm[-1] = 0 |
|
|
return np.transpose(x, perm) |
|
|
|
|
|
|
|
|
def _stft( |
|
|
x, |
|
|
fft_length, |
|
|
window, |
|
|
axis=-1, |
|
|
center=False, |
|
|
onesided=False, |
|
|
hop_length=None, |
|
|
): |
|
|
ft = torch.stft( |
|
|
torch.from_numpy(x), |
|
|
n_fft=fft_length, |
|
|
hop_length=hop_length, |
|
|
win_length=fft_length, |
|
|
window=torch.from_numpy(window), |
|
|
center=center, |
|
|
onesided=onesided, |
|
|
return_complex=True, |
|
|
) |
|
|
r = np.real(ft) |
|
|
i = np.imag(ft) |
|
|
merged = np.vstack([r[np.newaxis, ...], i[np.newaxis, ...]]) |
|
|
perm = np.arange(len(merged.shape)) |
|
|
perm[:-1] = perm[1:] |
|
|
perm[-1] = 0 |
|
|
tr = np.transpose(merged, list(perm)) |
|
|
if tr.shape[-1] != 2: |
|
|
raise AssertionError( |
|
|
f"Unexpected shape {tr.shape}, x.shape={x.shape} " |
|
|
f"fft_length={fft_length}, window={window}." |
|
|
) |
|
|
return ft.numpy(), tr.astype(np.float32) |
|
|
|
|
|
|
|
|
class TestOnnxSignal(onnx_script_test_case.OnnxScriptTestCase): |
|
|
@parameterized.parameterized.expand( |
|
|
itertools.product( |
|
|
[False, True], |
|
|
[ |
|
|
np.arange(5).astype(np.float32), |
|
|
np.arange(5).astype(np.float32).reshape((1, -1)), |
|
|
np.arange(30).astype(np.float32).reshape((2, 3, -1)), |
|
|
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)), |
|
|
], |
|
|
[4, 5, 6], |
|
|
) |
|
|
) |
|
|
def test_dft_rfft_last_axis(self, onesided: bool, x_: np.ndarray, s: int): |
|
|
x = x_[..., np.newaxis] |
|
|
le = np.array([s], dtype=np.int64) |
|
|
expected = _fft(x_, le) |
|
|
if onesided: |
|
|
slices = [slice(0, a) for a in expected.shape] |
|
|
slices[-2] = slice(0, expected.shape[-2] // 2 + expected.shape[-2] % 2) |
|
|
expected = expected[tuple(slices)] |
|
|
case = onnx_script_test_case.FunctionTestParams( |
|
|
signal_dft.dft_last_axis, [x, le, True], [expected] |
|
|
) |
|
|
else: |
|
|
case = onnx_script_test_case.FunctionTestParams( |
|
|
signal_dft.dft_last_axis, [x, le], [expected] |
|
|
) |
|
|
self.run_eager_test(case, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_dft_cfft_last_axis(self): |
|
|
xs = [ |
|
|
np.arange(5).astype(np.float32), |
|
|
np.arange(5).astype(np.float32).reshape((1, -1)), |
|
|
np.arange(30).astype(np.float32).reshape((2, 3, -1)), |
|
|
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)), |
|
|
] |
|
|
ys = [ |
|
|
np.arange(5).astype(np.float32) / 10, |
|
|
np.arange(5).astype(np.float32).reshape((1, -1)) / 10, |
|
|
np.arange(30).astype(np.float32).reshape((2, 3, -1)) / 10, |
|
|
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)) / 10, |
|
|
] |
|
|
cs = [x + 1j * y for x, y in zip(xs, ys)] |
|
|
|
|
|
for c in cs: |
|
|
x = _complex2float(c) |
|
|
for s in (4, 5, 6): |
|
|
le = np.array([s], dtype=np.int64) |
|
|
we = np.array([1] * le[0], dtype=np.float32) |
|
|
expected1 = _fft(c, le) |
|
|
expected2 = _cfft(x, le) |
|
|
np.testing.assert_allclose(expected1, expected2) |
|
|
with self.subTest( |
|
|
c_shape=c.shape, |
|
|
le=list(le), |
|
|
expected_shape=expected1.shape, |
|
|
weights=we, |
|
|
): |
|
|
case = onnx_script_test_case.FunctionTestParams( |
|
|
signal_dft.dft_last_axis, [x, le, False], [expected1] |
|
|
) |
|
|
self.run_eager_test(case, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
@parameterized.parameterized.expand( |
|
|
itertools.product( |
|
|
[ |
|
|
np.arange(5).astype(np.float32), |
|
|
np.arange(10).astype(np.float32).reshape((2, -1)), |
|
|
np.arange(30).astype(np.float32).reshape((2, 3, -1)), |
|
|
np.arange(36).astype(np.float32).reshape((2, 3, 2, -1)), |
|
|
], |
|
|
[4, 5, 6], |
|
|
) |
|
|
) |
|
|
def test_dft_rfft(self, x_, s: int): |
|
|
x = x_[..., np.newaxis] |
|
|
|
|
|
le = np.array([s], dtype=np.int64) |
|
|
for ax in range(len(x_.shape)): |
|
|
expected = _fft(x_, le, axis=ax) |
|
|
nax = np.array([ax], dtype=np.int64) |
|
|
with self.subTest( |
|
|
x_shape=x.shape, |
|
|
le=list(le), |
|
|
ax=ax, |
|
|
expected_shape=expected.shape, |
|
|
): |
|
|
case = onnx_script_test_case.FunctionTestParams( |
|
|
signal_dft.dft, [x, le, nax], [expected] |
|
|
) |
|
|
self.run_eager_test(case, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
@parameterized.parameterized.expand( |
|
|
[ |
|
|
(np.arange(5).astype(np.float32), np.arange(5).astype(np.float32) / 10), |
|
|
( |
|
|
np.arange(5).astype(np.float32).reshape((1, -1)), |
|
|
np.arange(5).astype(np.float32).reshape((1, -1)) / 10, |
|
|
), |
|
|
( |
|
|
np.arange(30).astype(np.float32).reshape((2, 3, -1)), |
|
|
np.arange(30).astype(np.float32).reshape((2, 3, -1)) / 10, |
|
|
), |
|
|
( |
|
|
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)), |
|
|
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)) / 10, |
|
|
), |
|
|
] |
|
|
) |
|
|
def test_dft_cfft(self, x, y): |
|
|
c = x + 1j * y |
|
|
x = _complex2float(c) |
|
|
for s in (4, 5, 6): |
|
|
le = np.array([s], dtype=np.int64) |
|
|
for ax in range(len(c.shape)): |
|
|
nax = np.array([ax], dtype=np.int64) |
|
|
expected1 = _fft(c, le, axis=ax) |
|
|
expected2 = _cfft(x, le, axis=ax) |
|
|
np.testing.assert_allclose(expected1, expected2) |
|
|
with self.subTest( |
|
|
c_shape=c.shape, |
|
|
le=list(le), |
|
|
ax=ax, |
|
|
expected_shape=expected1.shape, |
|
|
): |
|
|
case = onnx_script_test_case.FunctionTestParams( |
|
|
signal_dft.dft, [x, le, nax, False], [expected1] |
|
|
) |
|
|
self.run_eager_test(case, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
@parameterized.parameterized.expand( |
|
|
[ |
|
|
(np.arange(5).astype(np.float32),), |
|
|
(np.arange(10).astype(np.float32).reshape((2, -1)),), |
|
|
(np.arange(30).astype(np.float32).reshape((2, 3, -1)),), |
|
|
(np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)),), |
|
|
] |
|
|
) |
|
|
def test_dft_rifft(self, x_): |
|
|
x = x_[..., np.newaxis] |
|
|
for s in (4, 5, 6): |
|
|
le = np.array([s], dtype=np.int64) |
|
|
for ax in range(len(x_.shape)): |
|
|
expected = _ifft(x_, le, axis=ax) |
|
|
nax = np.array([ax], dtype=np.int64) |
|
|
with self.subTest( |
|
|
x_shape=x.shape, |
|
|
le=list(le), |
|
|
ax=str(ax), |
|
|
expected_shape=expected.shape, |
|
|
): |
|
|
case = onnx_script_test_case.FunctionTestParams( |
|
|
signal_dft.dft, [x, le, nax, True], [expected] |
|
|
) |
|
|
self.run_eager_test(case, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
@parameterized.parameterized.expand( |
|
|
[ |
|
|
(np.arange(5).astype(np.float32), np.arange(5).astype(np.float32) / 10), |
|
|
( |
|
|
np.arange(5).astype(np.float32).reshape((1, -1)), |
|
|
np.arange(5).astype(np.float32).reshape((1, -1)) / 10, |
|
|
), |
|
|
( |
|
|
np.arange(30).astype(np.float32).reshape((2, 3, -1)), |
|
|
np.arange(30).astype(np.float32).reshape((2, 3, -1)) / 10, |
|
|
), |
|
|
( |
|
|
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)), |
|
|
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)) / 10, |
|
|
), |
|
|
] |
|
|
) |
|
|
def test_dft_cifft(self, x, y): |
|
|
c = x + 1j * y |
|
|
|
|
|
x = _complex2float(c) |
|
|
for s in (4, 5, 6): |
|
|
le = np.array([s], dtype=np.int64) |
|
|
for ax in range(len(c.shape)): |
|
|
nax = np.array([ax], dtype=np.int64) |
|
|
expected1 = _ifft(c, le, axis=ax) |
|
|
expected2 = _cifft(x, le, axis=ax) |
|
|
np.testing.assert_allclose(expected1, expected2) |
|
|
with self.subTest( |
|
|
c_shape=c.shape, |
|
|
le=list(le), |
|
|
ax=str(ax), |
|
|
expected_shape=expected1.shape, |
|
|
): |
|
|
case = onnx_script_test_case.FunctionTestParams( |
|
|
signal_dft.dft, [x, le, nax, True], [expected1] |
|
|
) |
|
|
self.run_eager_test(case, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_hann_window(self): |
|
|
le = np.array([5], dtype=np.int64) |
|
|
expected = (np.sin((np.arange(5) * np.pi) / 4) ** 2).astype(np.float32) |
|
|
case = onnx_script_test_case.FunctionTestParams( |
|
|
signal_dft.hann_window, [le], [expected] |
|
|
) |
|
|
self.run_eager_test(case, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_hamming_window(self): |
|
|
le = np.array([5], dtype=np.int64) |
|
|
alpha = np.array([0.54], dtype=np.float32) |
|
|
beta = np.array([0.46], dtype=np.float32) |
|
|
expected = alpha - np.cos(np.arange(5) * np.pi * 2 / 4) * beta |
|
|
case = onnx_script_test_case.FunctionTestParams( |
|
|
signal_dft.hamming_window, [le, alpha, beta], [expected] |
|
|
) |
|
|
self.run_eager_test(case, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_blackman_window(self): |
|
|
le = np.array([5], dtype=np.int64) |
|
|
expected = ( |
|
|
np.array([0.42]) |
|
|
- np.cos(np.arange(5) * np.pi * 2 / 4) * 0.5 |
|
|
+ np.cos(np.arange(5) * np.pi * 4 / 4) * 0.08 |
|
|
) |
|
|
case = onnx_script_test_case.FunctionTestParams( |
|
|
signal_dft.blackman_window, [le], [expected] |
|
|
) |
|
|
self.run_eager_test(case, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
@parameterized.parameterized.expand( |
|
|
[ |
|
|
("hp2", np.arange(24).astype(np.float32).reshape((3, 8)), 6, 2, 2), |
|
|
("bug", np.arange(24).astype(np.float32).reshape((3, 8)), 6, 3, 1), |
|
|
("A0", np.arange(5).astype(np.float32), 5, 1, 1), |
|
|
("A1", np.arange(5).astype(np.float32), 4, 2, 1), |
|
|
("A2", np.arange(5).astype(np.float32), 6, 1, 1), |
|
|
("B0", np.arange(10).astype(np.float32).reshape((2, -1)), 5, 1, 1), |
|
|
("B1", np.arange(10).astype(np.float32).reshape((2, -1)), 4, 2, 1), |
|
|
("B2", np.arange(10).astype(np.float32).reshape((2, -1)), 6, 1, 1), |
|
|
("C0", np.arange(30).astype(np.float32).reshape((6, -1)), 5, 1, 1), |
|
|
("C1", np.arange(30).astype(np.float32).reshape((6, -1)), 4, 2, 1), |
|
|
("C2", np.arange(30).astype(np.float32).reshape((6, -1)), 6, 1, 1), |
|
|
("D0", np.arange(60).astype(np.float32).reshape((6, -1)), 5, 6, 1), |
|
|
("D1", np.arange(60).astype(np.float32).reshape((6, -1)), 4, 7, 1), |
|
|
("D2", np.arange(60).astype(np.float32).reshape((6, -1)), 6, 5, 1), |
|
|
] |
|
|
) |
|
|
def test_dft_rstft(self, name: str, x_: np.ndarray, s: int, fs: int, hp: int): |
|
|
x = x_[..., np.newaxis] |
|
|
le = np.array([s], dtype=np.int64) |
|
|
fsv = np.array([fs], dtype=np.int64) |
|
|
hpv = np.array([hp], dtype=np.int64) |
|
|
window = signal_dft.blackman_window(le) |
|
|
window[:] = (np.arange(window.shape[0]) + 1).astype(window.dtype) |
|
|
try: |
|
|
_, expected = _stft(x_, le[0], window=window, hop_length=hpv[0]) |
|
|
except RuntimeError: |
|
|
self.skipTest("Unable to validate with torch.") |
|
|
info = dict( |
|
|
name=name, |
|
|
x_shape=x.shape, |
|
|
le=list(le), |
|
|
hp=hp, |
|
|
fs=fs, |
|
|
expected_shape=expected.shape, |
|
|
window_shape=window.shape, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
case = onnx_script_test_case.FunctionTestParams( |
|
|
signal_dft.stft, [x, le, hpv, fsv, window], [expected] |
|
|
) |
|
|
try: |
|
|
self.run_eager_test(case, rtol=1e-3, atol=1e-3) |
|
|
except AssertionError as e: |
|
|
raise AssertionError(f"Issue with {info!r}.") from e |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
unittest.main(verbosity=2) |
|
|
|