Dorothydu's picture
Upload 50 random repository samples
9d3c8f5 verified
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import itertools
import unittest
import numpy as np
import parameterized
import torch
from tests.common import onnx_script_test_case
from tests.models import signal_dft
def _fft(x, fft_length, axis=-1):
ft = np.fft.fft(x, fft_length[0], axis=axis)
r = np.real(ft)
i = np.imag(ft)
merged = np.vstack([r[np.newaxis, ...], i[np.newaxis, ...]])
perm = np.arange(len(merged.shape))
perm[:-1] = perm[1:]
perm[-1] = 0
tr = np.transpose(merged, list(perm))
if tr.shape[-1] != 2:
raise AssertionError(
f"Unexpected shape {tr.shape}, x.shape={x.shape} fft_length={fft_length}."
)
return tr
def _cifft(x, fft_length, axis=-1):
slices = [slice(0, x) for x in x.shape]
slices[-1] = slice(0, x.shape[-1], 2)
real = x[tuple(slices)]
slices[-1] = slice(1, x.shape[-1], 2)
imag = x[tuple(slices)]
c = np.squeeze(real + 1j * imag, -1)
return _ifft(c, fft_length, axis=axis)
def _ifft(x, fft_length, axis=-1):
ft = np.fft.ifft(x, fft_length[0], axis=axis)
r = np.real(ft)
i = np.imag(ft)
merged = np.vstack([r[np.newaxis, ...], i[np.newaxis, ...]])
perm = np.arange(len(merged.shape))
perm[:-1] = perm[1:]
perm[-1] = 0
tr = np.transpose(merged, list(perm))
if tr.shape[-1] != 2:
raise AssertionError(
f"Unexpected shape {tr.shape}, x.shape={x.shape} fft_length={fft_length}."
)
return tr
def _cfft(x, fft_length, axis=-1):
slices = [slice(0, x) for x in x.shape]
slices[-1] = slice(0, x.shape[-1], 2)
real = x[tuple(slices)]
slices[-1] = slice(1, x.shape[-1], 2)
imag = x[tuple(slices)]
c = np.squeeze(real + 1j * imag, -1)
return _fft(c, fft_length, axis=axis)
def _complex2float(c):
real = np.real(c)
imag = np.imag(c)
x = np.vstack([real[np.newaxis, ...], imag[np.newaxis, ...]])
perm = list(range(len(x.shape)))
perm[:-1] = perm[1:]
perm[-1] = 0
return np.transpose(x, perm)
def _stft(
x,
fft_length,
window,
axis=-1, # pylint: disable=unused-argument
center=False,
onesided=False,
hop_length=None,
):
ft = torch.stft(
torch.from_numpy(x),
n_fft=fft_length,
hop_length=hop_length,
win_length=fft_length,
window=torch.from_numpy(window),
center=center,
onesided=onesided,
return_complex=True,
)
r = np.real(ft)
i = np.imag(ft)
merged = np.vstack([r[np.newaxis, ...], i[np.newaxis, ...]])
perm = np.arange(len(merged.shape))
perm[:-1] = perm[1:]
perm[-1] = 0
tr = np.transpose(merged, list(perm))
if tr.shape[-1] != 2:
raise AssertionError(
f"Unexpected shape {tr.shape}, x.shape={x.shape} "
f"fft_length={fft_length}, window={window}."
)
return ft.numpy(), tr.astype(np.float32)
class TestOnnxSignal(onnx_script_test_case.OnnxScriptTestCase):
@parameterized.parameterized.expand(
itertools.product(
[False, True],
[
np.arange(5).astype(np.float32),
np.arange(5).astype(np.float32).reshape((1, -1)),
np.arange(30).astype(np.float32).reshape((2, 3, -1)),
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)),
],
[4, 5, 6],
)
)
def test_dft_rfft_last_axis(self, onesided: bool, x_: np.ndarray, s: int):
x = x_[..., np.newaxis]
le = np.array([s], dtype=np.int64)
expected = _fft(x_, le)
if onesided:
slices = [slice(0, a) for a in expected.shape]
slices[-2] = slice(0, expected.shape[-2] // 2 + expected.shape[-2] % 2)
expected = expected[tuple(slices)]
case = onnx_script_test_case.FunctionTestParams(
signal_dft.dft_last_axis, [x, le, True], [expected]
)
else:
case = onnx_script_test_case.FunctionTestParams(
signal_dft.dft_last_axis, [x, le], [expected]
)
self.run_eager_test(case, rtol=1e-4, atol=1e-4)
def test_dft_cfft_last_axis(self):
xs = [
np.arange(5).astype(np.float32),
np.arange(5).astype(np.float32).reshape((1, -1)),
np.arange(30).astype(np.float32).reshape((2, 3, -1)),
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)),
]
ys = [
np.arange(5).astype(np.float32) / 10,
np.arange(5).astype(np.float32).reshape((1, -1)) / 10,
np.arange(30).astype(np.float32).reshape((2, 3, -1)) / 10,
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)) / 10,
]
cs = [x + 1j * y for x, y in zip(xs, ys)]
for c in cs:
x = _complex2float(c)
for s in (4, 5, 6):
le = np.array([s], dtype=np.int64)
we = np.array([1] * le[0], dtype=np.float32)
expected1 = _fft(c, le)
expected2 = _cfft(x, le)
np.testing.assert_allclose(expected1, expected2)
with self.subTest(
c_shape=c.shape,
le=list(le),
expected_shape=expected1.shape,
weights=we,
):
case = onnx_script_test_case.FunctionTestParams(
signal_dft.dft_last_axis, [x, le, False], [expected1]
)
self.run_eager_test(case, rtol=1e-4, atol=1e-4)
@parameterized.parameterized.expand(
itertools.product(
[
np.arange(5).astype(np.float32),
np.arange(10).astype(np.float32).reshape((2, -1)),
np.arange(30).astype(np.float32).reshape((2, 3, -1)),
np.arange(36).astype(np.float32).reshape((2, 3, 2, -1)),
],
[4, 5, 6],
)
)
def test_dft_rfft(self, x_, s: int):
x = x_[..., np.newaxis]
le = np.array([s], dtype=np.int64)
for ax in range(len(x_.shape)):
expected = _fft(x_, le, axis=ax)
nax = np.array([ax], dtype=np.int64)
with self.subTest(
x_shape=x.shape,
le=list(le),
ax=ax,
expected_shape=expected.shape,
):
case = onnx_script_test_case.FunctionTestParams(
signal_dft.dft, [x, le, nax], [expected]
)
self.run_eager_test(case, rtol=1e-4, atol=1e-4)
@parameterized.parameterized.expand(
[
(np.arange(5).astype(np.float32), np.arange(5).astype(np.float32) / 10),
(
np.arange(5).astype(np.float32).reshape((1, -1)),
np.arange(5).astype(np.float32).reshape((1, -1)) / 10,
),
(
np.arange(30).astype(np.float32).reshape((2, 3, -1)),
np.arange(30).astype(np.float32).reshape((2, 3, -1)) / 10,
),
(
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)),
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)) / 10,
),
]
)
def test_dft_cfft(self, x, y):
c = x + 1j * y
x = _complex2float(c)
for s in (4, 5, 6):
le = np.array([s], dtype=np.int64)
for ax in range(len(c.shape)):
nax = np.array([ax], dtype=np.int64)
expected1 = _fft(c, le, axis=ax)
expected2 = _cfft(x, le, axis=ax)
np.testing.assert_allclose(expected1, expected2)
with self.subTest(
c_shape=c.shape,
le=list(le),
ax=ax,
expected_shape=expected1.shape,
):
case = onnx_script_test_case.FunctionTestParams(
signal_dft.dft, [x, le, nax, False], [expected1]
)
self.run_eager_test(case, rtol=1e-4, atol=1e-4)
@parameterized.parameterized.expand(
[
(np.arange(5).astype(np.float32),),
(np.arange(10).astype(np.float32).reshape((2, -1)),),
(np.arange(30).astype(np.float32).reshape((2, 3, -1)),),
(np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)),),
]
)
def test_dft_rifft(self, x_):
x = x_[..., np.newaxis]
for s in (4, 5, 6):
le = np.array([s], dtype=np.int64)
for ax in range(len(x_.shape)):
expected = _ifft(x_, le, axis=ax)
nax = np.array([ax], dtype=np.int64)
with self.subTest(
x_shape=x.shape,
le=list(le),
ax=str(ax),
expected_shape=expected.shape,
):
case = onnx_script_test_case.FunctionTestParams(
signal_dft.dft, [x, le, nax, True], [expected]
)
self.run_eager_test(case, rtol=1e-4, atol=1e-4)
@parameterized.parameterized.expand(
[
(np.arange(5).astype(np.float32), np.arange(5).astype(np.float32) / 10),
(
np.arange(5).astype(np.float32).reshape((1, -1)),
np.arange(5).astype(np.float32).reshape((1, -1)) / 10,
),
(
np.arange(30).astype(np.float32).reshape((2, 3, -1)),
np.arange(30).astype(np.float32).reshape((2, 3, -1)) / 10,
),
(
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)),
np.arange(60).astype(np.float32).reshape((2, 3, 2, -1)) / 10,
),
]
)
def test_dft_cifft(self, x, y):
c = x + 1j * y
x = _complex2float(c)
for s in (4, 5, 6):
le = np.array([s], dtype=np.int64)
for ax in range(len(c.shape)):
nax = np.array([ax], dtype=np.int64)
expected1 = _ifft(c, le, axis=ax)
expected2 = _cifft(x, le, axis=ax)
np.testing.assert_allclose(expected1, expected2)
with self.subTest(
c_shape=c.shape,
le=list(le),
ax=str(ax),
expected_shape=expected1.shape,
):
case = onnx_script_test_case.FunctionTestParams(
signal_dft.dft, [x, le, nax, True], [expected1]
)
self.run_eager_test(case, rtol=1e-4, atol=1e-4)
def test_hann_window(self):
le = np.array([5], dtype=np.int64)
expected = (np.sin((np.arange(5) * np.pi) / 4) ** 2).astype(np.float32)
case = onnx_script_test_case.FunctionTestParams(
signal_dft.hann_window, [le], [expected]
)
self.run_eager_test(case, rtol=1e-4, atol=1e-4)
def test_hamming_window(self):
le = np.array([5], dtype=np.int64)
alpha = np.array([0.54], dtype=np.float32)
beta = np.array([0.46], dtype=np.float32)
expected = alpha - np.cos(np.arange(5) * np.pi * 2 / 4) * beta
case = onnx_script_test_case.FunctionTestParams(
signal_dft.hamming_window, [le, alpha, beta], [expected]
)
self.run_eager_test(case, rtol=1e-4, atol=1e-4)
def test_blackman_window(self):
le = np.array([5], dtype=np.int64)
expected = (
np.array([0.42])
- np.cos(np.arange(5) * np.pi * 2 / 4) * 0.5
+ np.cos(np.arange(5) * np.pi * 4 / 4) * 0.08
)
case = onnx_script_test_case.FunctionTestParams(
signal_dft.blackman_window, [le], [expected]
)
self.run_eager_test(case, rtol=1e-4, atol=1e-4)
@parameterized.parameterized.expand(
[
("hp2", np.arange(24).astype(np.float32).reshape((3, 8)), 6, 2, 2),
("bug", np.arange(24).astype(np.float32).reshape((3, 8)), 6, 3, 1),
("A0", np.arange(5).astype(np.float32), 5, 1, 1),
("A1", np.arange(5).astype(np.float32), 4, 2, 1),
("A2", np.arange(5).astype(np.float32), 6, 1, 1),
("B0", np.arange(10).astype(np.float32).reshape((2, -1)), 5, 1, 1),
("B1", np.arange(10).astype(np.float32).reshape((2, -1)), 4, 2, 1),
("B2", np.arange(10).astype(np.float32).reshape((2, -1)), 6, 1, 1),
("C0", np.arange(30).astype(np.float32).reshape((6, -1)), 5, 1, 1),
("C1", np.arange(30).astype(np.float32).reshape((6, -1)), 4, 2, 1),
("C2", np.arange(30).astype(np.float32).reshape((6, -1)), 6, 1, 1),
("D0", np.arange(60).astype(np.float32).reshape((6, -1)), 5, 6, 1),
("D1", np.arange(60).astype(np.float32).reshape((6, -1)), 4, 7, 1),
("D2", np.arange(60).astype(np.float32).reshape((6, -1)), 6, 5, 1),
]
)
def test_dft_rstft(self, name: str, x_: np.ndarray, s: int, fs: int, hp: int):
x = x_[..., np.newaxis]
le = np.array([s], dtype=np.int64)
fsv = np.array([fs], dtype=np.int64)
hpv = np.array([hp], dtype=np.int64)
window = signal_dft.blackman_window(le)
window[:] = (np.arange(window.shape[0]) + 1).astype(window.dtype)
try:
_, expected = _stft(x_, le[0], window=window, hop_length=hpv[0])
except RuntimeError:
self.skipTest("Unable to validate with torch.")
info = dict(
name=name,
x_shape=x.shape,
le=list(le),
hp=hp,
fs=fs,
expected_shape=expected.shape,
window_shape=window.shape,
)
# stft
# x, fft_length, hop_length, n_frames, window, onesided=False
case = onnx_script_test_case.FunctionTestParams(
signal_dft.stft, [x, le, hpv, fsv, window], [expected]
)
try:
self.run_eager_test(case, rtol=1e-3, atol=1e-3)
except AssertionError as e:
raise AssertionError(f"Issue with {info!r}.") from e
if __name__ == "__main__":
unittest.main(verbosity=2)