# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """Onnx Pattern Rewriting. This script shows how to define a rewriting rule based on patterns. The objective is to replace some nodes in an onnx model into another sequence of nodes but more efficient. First a dummy model =================== """ import numpy as np import onnx import onnx.helper as oh import onnx.numpy_helper as onh from onnxscript import ir from onnxscript.rewriter import pattern def get_rotary_model(bad_model=False): inputs = [ oh.make_tensor_value_info("x", onnx.TensorProto.INT64, shape=[]), oh.make_tensor_value_info("pos_ids", onnx.TensorProto.FLOAT, shape=[]), oh.make_tensor_value_info("axis", onnx.TensorProto.INT64, shape=[]), ] nodes = [ oh.make_node("Unsqueeze", ["x", "axis"], ["_onx_unsqueeze0"]), oh.make_node("Cast", ["_onx_unsqueeze0"], ["_onx_cast0"], to=1), oh.make_node("MatMul", ["pos_ids", "_onx_cast0"], ["_onx_matmul0"]), oh.make_node("Transpose", ["_onx_matmul0"], ["_onx_transpose0"]), oh.make_node( "ConcatTrainingBad" if bad_model else "ConcatTraining", ["_onx_transpose0", "_onx_transpose0"], ["_onx_concattraining0", "_onx_concattraining1"], domain="com.microsoft", ), oh.make_node("Sin", ["_onx_concattraining0"], ["_onx_sin0"]), oh.make_node("Cast", ["_onx_sin0"], ["_onx_cast02"], to=1), oh.make_node("Cos", ["_onx_concattraining0"], ["_onx_cos0"]), oh.make_node("Cast", ["_onx_cos0"], ["_onx_cast03"], to=1), ] outputs = [ oh.make_tensor_value_info("_onx_cast02", onnx.TensorProto.UNDEFINED, []), oh.make_tensor_value_info("_onx_cast03", onnx.TensorProto.UNDEFINED, []), ] model = oh.make_model( oh.make_graph( nodes, "experiment", inputs, outputs, ), opset_imports=[ oh.make_opsetid("", 18), oh.make_opsetid("com.microsoft", 18), ], ) return model model = get_rotary_model() ir_model = ir.serde.deserialize_model(model) #################################### # The rewriting pattern # ===================== def rotary_match_pattern(op, x, pos_ids, axis): """The pattern to match.""" unsqueeze = op.Unsqueeze(x, axis) cast = op.Cast(unsqueeze, to=onnx.TensorProto.FLOAT) matmul = op.MatMul(pos_ids, cast) transpose = op.Transpose(matmul) output, _length = op.ConcatTraining( transpose, transpose, domain="com.microsoft", outputs=2 ) sin = op.Sin(output) cast1 = op.Cast(sin, to=onnx.TensorProto.FLOAT) cos = op.Cos(output) cast2 = op.Cast(cos, to=onnx.TensorProto.FLOAT) return cast1, cast2 def rotary_apply_pattern(op, x, pos_ids, axis): """The replacement pattern.""" cos_cache = op.Constant(value=onh.from_array(np.random.rand(256, 256).astype(np.float16))) sin_cache = op.Constant(value=onh.from_array(np.random.rand(256, 256).astype(np.float16))) part1, part2 = op.RotaryEmbedding( x, pos_ids, cos_cache, sin_cache, domain="com.microsoft", outputs=2 ) return part1, part2 ########################### # The rule # ======== # # The rule is easy to create. rule = pattern.RewriteRule(rotary_match_pattern, rotary_apply_pattern, verbose=10) ########################## # Let's apply it. rule.apply_to_model(ir_model) ######################## # And finally, we can generate the model. rewritten_model = ir.serde.serialize_model(ir_model) ######################## # Let's see what it looks like. for node in rewritten_model.graph.node: print(f"{node.op_type}({', '.join(node.input)}) -> {', '.join(node.output)}") ############################# # What if it fails? # ================= model = get_rotary_model(True) ir_model = ir.serde.deserialize_model(model) rule.apply_to_model(ir_model) rewritten_model = ir.serde.serialize_model(ir_model) print([n.op_type for n in rewritten_model.graph.node]) ################################ # The match did not happen. # Let's increase the verbosity. rule = pattern.RewriteRule(rotary_match_pattern, rotary_apply_pattern, verbose=10) rule.apply_to_model(ir_model) # TODO(rama): Update the following, the trace-printed looks different now. ###################################### # The logs shows every time the algorithm rejected a pattern. # We can see the following: # # :: # # [OnnxGenericPattern.match] NONE - line: 673:onnxscript.rewriter.generic_pattern, op_type=Cast # --hint--: BACKWARD: different node types # --pattern # ConcatTraining(transpose, transpose) -> (output, length) # -- model # ConcatTrainingBad(_onx_transpose0, _onx_transpose0) -> (_onx_concattraining0, _onx_concattraining1) # iteration=1 # --marked-- #2 # Cast(_onx_cos0) ~ Cast(cos) [140186194226496-140186194222320] # Cos(_onx_concattraining0) ~ Cos(output) [140186194230816-140186194223472] # len(stacked)=0:[] # # Line 673 in file `generic_pattern.py`, the match was rejected. # It says while comparing two nodes in the backward direction, # node types do not match. # It also says that two nodes were actually matched.