# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from __future__ import annotations from typing import Tuple, Union import numpy as np from onnx import TensorProto from onnx.helper import make_tensor from onnxscript import script from onnxscript.onnx_opset import opset15 as op from onnxscript.onnx_types import INT32, INT64 from tests.common.onnx_script_test_case import FunctionTestParams x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]], dtype=np.int32) zero = np.array(0, dtype=np.int64) # Inputs/Outputs of test-cases are specified as numpy arrays, or tuples of numpy arrays, # or as a list of values, e.g. [0, 1, 2], converted to an int32 numpy array. IOType = Union[np.ndarray, Tuple[np.ndarray, ...], list] def wrap_input_output(x: IOType) -> list(np.ndarray): if isinstance(x, np.ndarray): return [x] elif isinstance(x, tuple): return list(x) else: return [np.array(x, dtype=np.int32)] def test(f, input: IOType, output: IOType) -> FunctionTestParams: return FunctionTestParams(f, wrap_input_output(input), wrap_input_output(output)) @script(default_opset=op) def get_first_row(A: INT32[...]) -> INT32[...]: return A[0] get_first_row_test = test(get_first_row, input=x, output=[0, 1, 2]) @script(default_opset=op) def get_last_row(A: INT32[...]) -> INT32[...]: return A[-1] get_last_row_test = test(get_last_row, input=x, output=[9, 10, 11]) @script(default_opset=op) def get_column(A: INT32[...]) -> INT32[...]: return A[:, 1] get_column_test = test(get_column, input=x, output=[1, 4, 7, 10]) @script(default_opset=op) def get_unknown_row(A: INT32[...], i: INT64[...]) -> INT32[...]: return A[i] get_unknown_row_test = test(get_unknown_row, input=(x, zero), output=[0, 1, 2]) @script(default_opset=op) def get_computed_row(A: INT32[...]) -> INT32[...]: scalar_zero = op.Constant(value=make_tensor("scalar_zero", TensorProto.INT64, [], [0])) return A[scalar_zero + 1] get_computed_row_test = test(get_computed_row, input=x, output=[3, 4, 5]) @script(default_opset=op) def slice_from_1_to_2(A: INT32[...]) -> INT32[...]: return A[1:2] slice_from_to = test(slice_from_1_to_2, input=x, output=[[3, 4, 5]]) @script(default_opset=op) def slice_from_1(A: INT32[...]) -> INT32[...]: return A[1:] slice_from = test(slice_from_1, input=x, output=[[3, 4, 5], [6, 7, 8], [9, 10, 11]]) @script(default_opset=op) def slice_to_2(A: INT32[...]) -> INT32[...]: return A[:2] slice_to = test(slice_to_2, input=x, output=[[0, 1, 2], [3, 4, 5]]) @script(default_opset=op) def slice_step_minus1(A: INT32[...]) -> INT32[...]: return A[::-1] slice_neg_step = test( slice_step_minus1, input=x, output=[[9, 10, 11], [6, 7, 8], [3, 4, 5], [0, 1, 2]] ) @script(default_opset=op) def slice_from_1_to_minus1(A: INT32[...]) -> INT32[...]: return A[1:-1] slice_from_neg_to = test(slice_from_1_to_minus1, input=x, output=[[3, 4, 5], [6, 7, 8]]) @script(default_opset=op) def slice_to_0_step_minus1(A: INT32[...]) -> INT32[...]: return A[:0:-1] slice_to_neg_step = test(slice_to_0_step_minus1, input=x, output=x[:0:-1]) @script(default_opset=op) def get_row_slice_column(A: INT32[...]) -> INT32[...]: return A[0, :0:-1] index_and_slice = test(get_row_slice_column, input=x, output=x[0, :0:-1]) @script(default_opset=op) def slice_row_get_column(A: INT32[...]) -> INT32[...]: return A[:2, 0] slice_and_index = test(slice_row_get_column, input=x, output=x[:2, 0]) @script(default_opset=op) def slice_row_and_column(A: INT32[...]) -> INT32[...]: return A[:2, :1] slice_and_slice = test(slice_row_and_column, input=x, output=x[:2, :1]) @script(default_opset=op) def slice_from_2_to_0_step_minus1(A: INT32[...]) -> INT32[...]: return A[2:0:-1] slice_from_to_neg_step = test(slice_from_2_to_0_step_minus1, input=x, output=x[2:0:-1]) @script() def slice_computed_range(A: INT32[...]) -> INT32[...]: scalar_zero = op.Constant(value=make_tensor("scalar_zero", TensorProto.INT64, [], [0])) return A[scalar_zero + 1 : scalar_zero + 2] slice_computed_range_test = test(slice_computed_range, input=x, output=x[1:2]) @script(default_opset=op) def nested_expr(A: INT32[...]) -> INT32[...]: r = (A + 1)[0] return r nested_expr_test = test(nested_expr, input=x, output=[1, 2, 3]) # This notation is not possible with ONNX but is allowed by numpy. # @script() # def getitem_i_slice_right_step(A): # r = A[1::-1] # return r