| { | |
| "1512.03385": { | |
| "arxivId": "1512.03385", | |
| "title": "Deep Residual Learning for Image Recognition" | |
| }, | |
| "1706.03762": { | |
| "arxivId": "1706.03762", | |
| "title": "Attention is All you Need" | |
| }, | |
| "1810.04805": { | |
| "arxivId": "1810.04805", | |
| "title": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" | |
| }, | |
| "1505.04597": { | |
| "arxivId": "1505.04597", | |
| "title": "U-Net: Convolutional Networks for Biomedical Image Segmentation" | |
| }, | |
| "1506.01497": { | |
| "arxivId": "1506.01497", | |
| "title": "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" | |
| }, | |
| "1405.0312": { | |
| "arxivId": "1405.0312", | |
| "title": "Microsoft COCO: Common Objects in Context" | |
| }, | |
| "2005.14165": { | |
| "arxivId": "2005.14165", | |
| "title": "Language Models are Few-Shot Learners" | |
| }, | |
| "1506.02640": { | |
| "arxivId": "1506.02640", | |
| "title": "You Only Look Once: Unified, Real-Time Object Detection" | |
| }, | |
| "2010.11929": { | |
| "arxivId": "2010.11929", | |
| "title": "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" | |
| }, | |
| "1703.06870": { | |
| "arxivId": "1703.06870", | |
| "title": "Mask R-CNN" | |
| }, | |
| "1709.01507": { | |
| "arxivId": "1709.01507", | |
| "title": "Squeeze-and-Excitation Networks" | |
| }, | |
| "1907.11692": { | |
| "arxivId": "1907.11692", | |
| "title": "RoBERTa: A Robustly Optimized BERT Pretraining Approach" | |
| }, | |
| "2103.00020": { | |
| "arxivId": "2103.00020", | |
| "title": "Learning Transferable Visual Models From Natural Language Supervision" | |
| }, | |
| "1612.03144": { | |
| "arxivId": "1612.03144", | |
| "title": "Feature Pyramid Networks for Object Detection" | |
| }, | |
| "1409.3215": { | |
| "arxivId": "1409.3215", | |
| "title": "Sequence to Sequence Learning with Neural Networks" | |
| }, | |
| "1801.04381": { | |
| "arxivId": "1801.04381", | |
| "title": "MobileNetV2: Inverted Residuals and Linear Bottlenecks" | |
| }, | |
| "1606.00915": { | |
| "arxivId": "1606.00915", | |
| "title": "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs" | |
| }, | |
| "2103.14030": { | |
| "arxivId": "2103.14030", | |
| "title": "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" | |
| }, | |
| "1905.11946": { | |
| "arxivId": "1905.11946", | |
| "title": "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" | |
| }, | |
| "1807.06521": { | |
| "arxivId": "1807.06521", | |
| "title": "CBAM: Convolutional Block Attention Module" | |
| }, | |
| "2005.12872": { | |
| "arxivId": "2005.12872", | |
| "title": "End-to-End Object Detection with Transformers" | |
| }, | |
| "1611.05431": { | |
| "arxivId": "1611.05431", | |
| "title": "Aggregated Residual Transformations for Deep Neural Networks" | |
| }, | |
| "1706.02413": { | |
| "arxivId": "1706.02413", | |
| "title": "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" | |
| }, | |
| "1607.06450": { | |
| "arxivId": "1607.06450", | |
| "title": "Layer Normalization" | |
| }, | |
| "1711.07971": { | |
| "arxivId": "1711.07971", | |
| "title": "Non-local Neural Networks" | |
| }, | |
| "1906.08237": { | |
| "arxivId": "1906.08237", | |
| "title": "XLNet: Generalized Autoregressive Pretraining for Language Understanding" | |
| }, | |
| "2111.06377": { | |
| "arxivId": "2111.06377", | |
| "title": "Masked Autoencoders Are Scalable Vision Learners" | |
| }, | |
| "1909.11942": { | |
| "arxivId": "1909.11942", | |
| "title": "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations" | |
| }, | |
| "1411.4555": { | |
| "arxivId": "1411.4555", | |
| "title": "Show and tell: A neural image caption generator" | |
| }, | |
| "2012.12877": { | |
| "arxivId": "2012.12877", | |
| "title": "Training data-efficient image transformers & distillation through attention" | |
| }, | |
| "1602.07332": { | |
| "arxivId": "1602.07332", | |
| "title": "Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations" | |
| }, | |
| "1505.00468": { | |
| "arxivId": "1505.00468", | |
| "title": "VQA: Visual Question Answering" | |
| }, | |
| "1503.04069": { | |
| "arxivId": "1503.04069", | |
| "title": "LSTM: A Search Space Odyssey" | |
| }, | |
| "1703.06211": { | |
| "arxivId": "1703.06211", | |
| "title": "Deformable Convolutional Networks" | |
| }, | |
| "2104.14294": { | |
| "arxivId": "2104.14294", | |
| "title": "Emerging Properties in Self-Supervised Vision Transformers" | |
| }, | |
| "1904.01355": { | |
| "arxivId": "1904.01355", | |
| "title": "FCOS: Fully Convolutional One-Stage Object Detection" | |
| }, | |
| "1712.00726": { | |
| "arxivId": "1712.00726", | |
| "title": "Cascade R-CNN: Delving Into High Quality Object Detection" | |
| }, | |
| "1905.04899": { | |
| "arxivId": "1905.04899", | |
| "title": "CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features" | |
| }, | |
| "2010.04159": { | |
| "arxivId": "2010.04159", | |
| "title": "Deformable DETR: Deformable Transformers for End-to-End Object Detection" | |
| }, | |
| "2102.12092": { | |
| "arxivId": "2102.12092", | |
| "title": "Zero-Shot Text-to-Image Generation" | |
| }, | |
| "1707.07998": { | |
| "arxivId": "1707.07998", | |
| "title": "Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering" | |
| }, | |
| "2105.15203": { | |
| "arxivId": "2105.15203", | |
| "title": "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers" | |
| }, | |
| "1902.09212": { | |
| "arxivId": "1902.09212", | |
| "title": "Deep High-Resolution Representation Learning for Human Pose Estimation" | |
| }, | |
| "2006.09882": { | |
| "arxivId": "2006.09882", | |
| "title": "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments" | |
| }, | |
| "1807.05511": { | |
| "arxivId": "1807.05511", | |
| "title": "Object Detection With Deep Learning: A Review" | |
| }, | |
| "1908.02265": { | |
| "arxivId": "1908.02265", | |
| "title": "ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks" | |
| }, | |
| "2102.12122": { | |
| "arxivId": "2102.12122", | |
| "title": "Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions" | |
| }, | |
| "1910.03151": { | |
| "arxivId": "1910.03151", | |
| "title": "ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks" | |
| }, | |
| "2102.05918": { | |
| "arxivId": "2102.05918", | |
| "title": "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision" | |
| }, | |
| "1806.01261": { | |
| "arxivId": "1806.01261", | |
| "title": "Relational inductive biases, deep learning, and graph networks" | |
| }, | |
| "1612.00837": { | |
| "arxivId": "1612.00837", | |
| "title": "Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering" | |
| }, | |
| "2102.04306": { | |
| "arxivId": "2102.04306", | |
| "title": "TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation" | |
| }, | |
| "2012.15840": { | |
| "arxivId": "2012.15840", | |
| "title": "Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers" | |
| }, | |
| "2106.08254": { | |
| "arxivId": "2106.08254", | |
| "title": "BEiT: BERT Pre-Training of Image Transformers" | |
| }, | |
| "1811.11721": { | |
| "arxivId": "1811.11721", | |
| "title": "CCNet: Criss-Cross Attention for Semantic Segmentation" | |
| }, | |
| "1908.07490": { | |
| "arxivId": "1908.07490", | |
| "title": "LXMERT: Learning Cross-Modality Encoder Representations from Transformers" | |
| }, | |
| "1707.02968": { | |
| "arxivId": "1707.02968", | |
| "title": "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era" | |
| }, | |
| "1803.02155": { | |
| "arxivId": "1803.02155", | |
| "title": "Self-Attention with Relative Position Representations" | |
| }, | |
| "2101.01169": { | |
| "arxivId": "2101.01169", | |
| "title": "Transformers in Vision: A Survey" | |
| }, | |
| "1908.03557": { | |
| "arxivId": "1908.03557", | |
| "title": "VisualBERT: A Simple and Performant Baseline for Vision and Language" | |
| }, | |
| "2004.06165": { | |
| "arxivId": "2004.06165", | |
| "title": "Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks" | |
| }, | |
| "2101.11986": { | |
| "arxivId": "2101.11986", | |
| "title": "Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet" | |
| }, | |
| "2103.15808": { | |
| "arxivId": "2103.15808", | |
| "title": "CvT: Introducing Convolutions to Vision Transformers" | |
| }, | |
| "2011.00931": { | |
| "arxivId": "2011.00931", | |
| "title": "Point Transformer" | |
| }, | |
| "1807.10221": { | |
| "arxivId": "1807.10221", | |
| "title": "Unified Perceptual Parsing for Scene Understanding" | |
| }, | |
| "1908.08530": { | |
| "arxivId": "1908.08530", | |
| "title": "VL-BERT: Pre-training of Generic Visual-Linguistic Representations" | |
| }, | |
| "2104.02057": { | |
| "arxivId": "2104.02057", | |
| "title": "An Empirical Study of Training Self-Supervised Vision Transformers" | |
| }, | |
| "1802.05751": { | |
| "arxivId": "1802.05751", | |
| "title": "Image Transformer" | |
| }, | |
| "1811.08383": { | |
| "arxivId": "1811.08383", | |
| "title": "TSM: Temporal Shift Module for Efficient Video Understanding" | |
| }, | |
| "2012.12556": { | |
| "arxivId": "2012.12556", | |
| "title": "A Survey on Vision Transformer" | |
| }, | |
| "2012.00364": { | |
| "arxivId": "2012.00364", | |
| "title": "Pre-Trained Image Processing Transformer" | |
| }, | |
| "2102.03334": { | |
| "arxivId": "2102.03334", | |
| "title": "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" | |
| }, | |
| "1904.11492": { | |
| "arxivId": "1904.11492", | |
| "title": "GCNet: Non-Local Networks Meet Squeeze-Excitation Networks and Beyond" | |
| }, | |
| "2004.08955": { | |
| "arxivId": "2004.08955", | |
| "title": "ResNeSt: Split-Attention Networks" | |
| }, | |
| "2103.00112": { | |
| "arxivId": "2103.00112", | |
| "title": "Transformer in Transformer" | |
| }, | |
| "2012.09688": { | |
| "arxivId": "2012.09688", | |
| "title": "PCT: Point cloud transformer" | |
| }, | |
| "1801.00868": { | |
| "arxivId": "1801.00868", | |
| "title": "Panoptic Segmentation" | |
| }, | |
| "1712.04851": { | |
| "arxivId": "1712.04851", | |
| "title": "Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in Video Classification" | |
| }, | |
| "2107.06278": { | |
| "arxivId": "2107.06278", | |
| "title": "Per-Pixel Classification is Not All You Need for Semantic Segmentation" | |
| }, | |
| "2106.13797": { | |
| "arxivId": "2106.13797", | |
| "title": "PVT v2: Improved baselines with Pyramid Vision Transformer" | |
| }, | |
| "1811.00982": { | |
| "arxivId": "1811.00982", | |
| "title": "The Open Images Dataset V4" | |
| }, | |
| "2105.05633": { | |
| "arxivId": "2105.05633", | |
| "title": "Segmenter: Transformer for Semantic Segmentation" | |
| }, | |
| "1711.11575": { | |
| "arxivId": "1711.11575", | |
| "title": "Relation Networks for Object Detection" | |
| }, | |
| "2103.14899": { | |
| "arxivId": "2103.14899", | |
| "title": "CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification" | |
| }, | |
| "1904.01766": { | |
| "arxivId": "1904.01766", | |
| "title": "VideoBERT: A Joint Model for Video and Language Representation Learning" | |
| }, | |
| "1906.05909": { | |
| "arxivId": "1906.05909", | |
| "title": "Stand-Alone Self-Attention in Vision Models" | |
| }, | |
| "1912.11370": { | |
| "arxivId": "1912.11370", | |
| "title": "Big Transfer (BiT): General Visual Representation Learning" | |
| }, | |
| "1906.09756": { | |
| "arxivId": "1906.09756", | |
| "title": "Cascade R-CNN: High Quality Object Detection and Instance Segmentation" | |
| }, | |
| "2106.04803": { | |
| "arxivId": "2106.04803", | |
| "title": "CoAtNet: Marrying Convolution and Attention for All Data Sizes" | |
| }, | |
| "2009.06732": { | |
| "arxivId": "2009.06732", | |
| "title": "Efficient Transformers: A Survey" | |
| }, | |
| "2203.03605": { | |
| "arxivId": "2203.03605", | |
| "title": "DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection" | |
| }, | |
| "1904.09925": { | |
| "arxivId": "1904.09925", | |
| "title": "Attention Augmented Convolutional Networks" | |
| }, | |
| "2011.12450": { | |
| "arxivId": "2011.12450", | |
| "title": "Sparse R-CNN: End-to-End Object Detection with Learnable Proposals" | |
| }, | |
| "2106.04560": { | |
| "arxivId": "2106.04560", | |
| "title": "Scaling Vision Transformers" | |
| }, | |
| "2101.11605": { | |
| "arxivId": "2101.11605", | |
| "title": "Bottleneck Transformers for Visual Recognition" | |
| }, | |
| "2104.13840": { | |
| "arxivId": "2104.13840", | |
| "title": "Twins: Revisiting the Design of Spatial Attention in Vision Transformers" | |
| }, | |
| "2103.17239": { | |
| "arxivId": "2103.17239", | |
| "title": "Going deeper with Image Transformers" | |
| }, | |
| "1909.11059": { | |
| "arxivId": "1909.11059", | |
| "title": "Unified Vision-Language Pre-Training for Image Captioning and VQA" | |
| }, | |
| "2106.04554": { | |
| "arxivId": "2106.04554", | |
| "title": "A Survey of Transformers" | |
| }, | |
| "2103.15436": { | |
| "arxivId": "2103.15436", | |
| "title": "Transformer Tracking" | |
| }, | |
| "2104.12763": { | |
| "arxivId": "2104.12763", | |
| "title": "MDETR - Modulated Detection for End-to-End Multi-Modal Understanding" | |
| }, | |
| "2103.10697": { | |
| "arxivId": "2103.10697", | |
| "title": "ConViT: improving vision transformers with soft convolutional inductive biases" | |
| }, | |
| "2202.03555": { | |
| "arxivId": "2202.03555", | |
| "title": "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" | |
| }, | |
| "2004.13621": { | |
| "arxivId": "2004.13621", | |
| "title": "Exploring Self-Attention for Image Recognition" | |
| }, | |
| "2111.11418": { | |
| "arxivId": "2111.11418", | |
| "title": "MetaFormer is Actually What You Need for Vision" | |
| }, | |
| "2108.10904": { | |
| "arxivId": "2108.10904", | |
| "title": "SimVLM: Simple Visual Language Model Pretraining with Weak Supervision" | |
| }, | |
| "2106.14881": { | |
| "arxivId": "2106.14881", | |
| "title": "Early Convolutions Help Transformers See Better" | |
| }, | |
| "2011.14503": { | |
| "arxivId": "2011.14503", | |
| "title": "End-to-End Video Instance Segmentation with Transformers" | |
| }, | |
| "2201.12329": { | |
| "arxivId": "2201.12329", | |
| "title": "DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR" | |
| }, | |
| "2110.06922": { | |
| "arxivId": "2110.06922", | |
| "title": "DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries" | |
| }, | |
| "2102.10882": { | |
| "arxivId": "2102.10882", | |
| "title": "Conditional Positional Encodings for Vision Transformers" | |
| }, | |
| "2111.14819": { | |
| "arxivId": "2111.14819", | |
| "title": "Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling" | |
| }, | |
| "1810.11579": { | |
| "arxivId": "1810.11579", | |
| "title": "A2-Nets: Double Attention Networks" | |
| }, | |
| "2103.16302": { | |
| "arxivId": "2103.16302", | |
| "title": "Rethinking Spatial Dimensions of Vision Transformers" | |
| }, | |
| "1911.03584": { | |
| "arxivId": "1911.03584", | |
| "title": "On the Relationship between Self-Attention and Convolutional Layers" | |
| }, | |
| "2108.06152": { | |
| "arxivId": "2108.06152", | |
| "title": "Conditional DETR for Fast Training Convergence" | |
| }, | |
| "2012.00759": { | |
| "arxivId": "2012.00759", | |
| "title": "MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers" | |
| }, | |
| "2203.01305": { | |
| "arxivId": "2203.01305", | |
| "title": "DN-DETR: Accelerate DETR Training by Introducing Query DeNoising" | |
| }, | |
| "1904.11491": { | |
| "arxivId": "1904.11491", | |
| "title": "Local Relation Networks for Image Recognition" | |
| }, | |
| "2006.03677": { | |
| "arxivId": "2006.03677", | |
| "title": "Visual Transformers: Token-based Image Representation and Processing for Computer Vision" | |
| }, | |
| "2103.11886": { | |
| "arxivId": "2103.11886", | |
| "title": "DeepViT: Towards Deeper Vision Transformer" | |
| }, | |
| "2203.11496": { | |
| "arxivId": "2203.11496", | |
| "title": "TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers" | |
| }, | |
| "2106.05974": { | |
| "arxivId": "2106.05974", | |
| "title": "Scaling Vision with Sparse Mixture of Experts" | |
| }, | |
| "2001.00309": { | |
| "arxivId": "2001.00309", | |
| "title": "BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation" | |
| }, | |
| "2104.09224": { | |
| "arxivId": "2104.09224", | |
| "title": "Multi-Modal Fusion Transformer for End-to-End Autonomous Driving" | |
| }, | |
| "2103.11816": { | |
| "arxivId": "2103.11816", | |
| "title": "Incorporating Convolution Designs into Visual Transformers" | |
| }, | |
| "2109.08141": { | |
| "arxivId": "2109.08141", | |
| "title": "An End-to-End Transformer Model for 3D Object Detection" | |
| }, | |
| "2104.05707": { | |
| "arxivId": "2104.05707", | |
| "title": "LocalViT: Bringing Locality to Vision Transformers" | |
| }, | |
| "1902.02181": { | |
| "arxivId": "1902.02181", | |
| "title": "Attention in Natural Language Processing" | |
| }, | |
| "2202.06709": { | |
| "arxivId": "2202.06709", | |
| "title": "How Do Vision Transformers Work?" | |
| }, | |
| "2107.00641": { | |
| "arxivId": "2107.00641", | |
| "title": "Focal Self-attention for Local-Global Interactions in Vision Transformers" | |
| }, | |
| "2108.08839": { | |
| "arxivId": "2108.08839", | |
| "title": "PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers" | |
| }, | |
| "2103.12731": { | |
| "arxivId": "2103.12731", | |
| "title": "Scaling Local Self-Attention for Parameter Efficient Visual Backbones" | |
| }, | |
| "2203.06604": { | |
| "arxivId": "2203.06604", | |
| "title": "Masked Autoencoders for Point Cloud Self-supervised Learning" | |
| }, | |
| "2109.02497": { | |
| "arxivId": "2109.02497", | |
| "title": "Voxel Transformer for 3D Object Detection" | |
| }, | |
| "2102.07074": { | |
| "arxivId": "2102.07074", | |
| "title": "TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up" | |
| }, | |
| "2001.08248": { | |
| "arxivId": "2001.08248", | |
| "title": "How Much Position Information Do Convolutional Neural Networks Encode?" | |
| }, | |
| "2012.11409": { | |
| "arxivId": "2012.11409", | |
| "title": "3D Object Detection with Pointformer" | |
| }, | |
| "2103.03404": { | |
| "arxivId": "2103.03404", | |
| "title": "Attention is Not All You Need: Pure Attention Loses Rank Doubly Exponentially with Depth" | |
| }, | |
| "2103.15358": { | |
| "arxivId": "2103.15358", | |
| "title": "Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding" | |
| }, | |
| "2109.10852": { | |
| "arxivId": "2109.10852", | |
| "title": "Pix2seq: A Language Modeling Framework for Object Detection" | |
| }, | |
| "2011.10881": { | |
| "arxivId": "2011.10881", | |
| "title": "Rethinking Transformer-based Set Prediction for Object Detection" | |
| }, | |
| "2104.08541": { | |
| "arxivId": "2104.08541", | |
| "title": "TransVG: End-to-End Visual Grounding with Transformers" | |
| }, | |
| "2107.14222": { | |
| "arxivId": "2107.14222", | |
| "title": "Rethinking and Improving Relative Position Encoding for Vision Transformer" | |
| }, | |
| "2101.07448": { | |
| "arxivId": "2101.07448", | |
| "title": "Fast Convergence of DETR with Spatially Modulated Co-Attention" | |
| }, | |
| "2106.13112": { | |
| "arxivId": "2106.13112", | |
| "title": "VOLO: Vision Outlooker for Visual Recognition" | |
| }, | |
| "2104.00678": { | |
| "arxivId": "2104.00678", | |
| "title": "Group-Free 3D Object Detection via Transformers" | |
| }, | |
| "1904.05373": { | |
| "arxivId": "1904.05373", | |
| "title": "Pixel-Adaptive Convolutional Neural Networks" | |
| }, | |
| "2106.00666": { | |
| "arxivId": "2106.00666", | |
| "title": "You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection" | |
| }, | |
| "2102.10772": { | |
| "arxivId": "2102.10772", | |
| "title": "UniT: Multimodal Multitask Learning with a Unified Transformer" | |
| }, | |
| "1907.12009": { | |
| "arxivId": "1907.12009", | |
| "title": "Representation Degeneration Problem in Training Natural Language Generation Models" | |
| }, | |
| "2103.14167": { | |
| "arxivId": "2103.14167", | |
| "title": "COTR: Correspondence Transformer for Matching Across Images" | |
| }, | |
| "2105.01928": { | |
| "arxivId": "2105.01928", | |
| "title": "Instances as Queries" | |
| }, | |
| "2007.09451": { | |
| "arxivId": "2007.09451", | |
| "title": "Feature Pyramid Transformer" | |
| }, | |
| "2112.06375": { | |
| "arxivId": "2112.06375", | |
| "title": "Embracing Single Stride 3D Object Detector with Sparse Transformer" | |
| }, | |
| "2105.13677": { | |
| "arxivId": "2105.13677", | |
| "title": "ResT: An Efficient Transformer for Visual Recognition" | |
| }, | |
| "2110.09408": { | |
| "arxivId": "2110.09408", | |
| "title": "HRFormer: High-Resolution Transformer for Dense Prediction" | |
| }, | |
| "2108.10723": { | |
| "arxivId": "2108.10723", | |
| "title": "Improving 3D Object Detection with Channel-wise Transformer" | |
| }, | |
| "2104.10858": { | |
| "arxivId": "2104.10858", | |
| "title": "All Tokens Matter: Token Labeling for Training Better Vision Transformers" | |
| }, | |
| "2108.04444": { | |
| "arxivId": "2108.04444", | |
| "title": "SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer" | |
| }, | |
| "2203.10642": { | |
| "arxivId": "2203.10642", | |
| "title": "FUTR3D: A Unified Sensor Fusion Framework for 3D Detection" | |
| }, | |
| "2011.09315": { | |
| "arxivId": "2011.09315", | |
| "title": "End-to-End Object Detection with Adaptive Clustering Transformer" | |
| }, | |
| "2104.01318": { | |
| "arxivId": "2104.01318", | |
| "title": "Efficient DETR: Improving End-to-End Object Detector with Dense Prior" | |
| }, | |
| "2105.04553": { | |
| "arxivId": "2105.04553", | |
| "title": "Self-Supervised Learning with Swin Transformers" | |
| }, | |
| "2106.03089": { | |
| "arxivId": "2106.03089", | |
| "title": "Referring Transformer: A One-step Approach to Multi-task Visual Grounding" | |
| }, | |
| "2105.15075": { | |
| "arxivId": "2105.15075", | |
| "title": "Not All Images are Worth 16x16 Words: Dynamic Transformers for Efficient Image Recognition" | |
| }, | |
| "1603.06759": { | |
| "arxivId": "1603.06759", | |
| "title": "Convolution in Convolution for Network in Network" | |
| }, | |
| "2106.05656": { | |
| "arxivId": "2106.05656", | |
| "title": "MST: Masked Self-Supervised Transformer for Visual Representation" | |
| }, | |
| "2203.10314": { | |
| "arxivId": "2203.10314", | |
| "title": "Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds" | |
| }, | |
| "2203.11183": { | |
| "arxivId": "2203.11183", | |
| "title": "Masked Discrimination for Self-Supervised Learning on Point Clouds" | |
| }, | |
| "2112.04702": { | |
| "arxivId": "2112.04702", | |
| "title": "Fast Point Transformer" | |
| }, | |
| "2107.02191": { | |
| "arxivId": "2107.02191", | |
| "title": "TransformerFusion: Monocular RGB Scene Reconstruction using Transformers" | |
| }, | |
| "2203.10981": { | |
| "arxivId": "2203.10981", | |
| "title": "MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer" | |
| }, | |
| "2111.14330": { | |
| "arxivId": "2111.14330", | |
| "title": "Sparse DETR: Efficient End-to-End Object Detection with Learnable Sparsity" | |
| }, | |
| "2106.02351": { | |
| "arxivId": "2106.02351", | |
| "title": "SOLQ: Segmenting Objects by Learning Queries" | |
| }, | |
| "2105.00637": { | |
| "arxivId": "2105.00637", | |
| "title": "ISTR: End-to-End Instance Segmentation with Transformers" | |
| }, | |
| "2001.06891": { | |
| "arxivId": "2001.06891", | |
| "title": "Where Does It Exist: Spatio-Temporal Video Grounding for Multi-Form Sentences" | |
| }, | |
| "2206.02425": { | |
| "arxivId": "2206.02425", | |
| "title": "mmFormer: Multimodal Medical Transformer for Incomplete Multimodal Learning of Brain Tumor Segmentation" | |
| }, | |
| "2011.09763": { | |
| "arxivId": "2011.09763", | |
| "title": "Attention-Based Transformers for Instance Segmentation of Cells in Microstructures" | |
| }, | |
| "2204.02174": { | |
| "arxivId": "2204.02174", | |
| "title": "Multi-View Transformer for 3D Visual Grounding" | |
| }, | |
| "2108.02388": { | |
| "arxivId": "2108.02388", | |
| "title": "TransRefer3D: Entity-and-Relation Aware Transformer for Fine-Grained 3D Visual Grounding" | |
| }, | |
| "2107.03438": { | |
| "arxivId": "2107.03438", | |
| "title": "LanguageRefer: Spatial-Language Model for 3D Visual Grounding" | |
| }, | |
| "2012.05780": { | |
| "arxivId": "2012.05780", | |
| "title": "What Makes for End-to-End Object Detection?" | |
| }, | |
| "2203.16434": { | |
| "arxivId": "2203.16434", | |
| "title": "TubeDETR: Spatio-Temporal Video Grounding with Transformers" | |
| }, | |
| "2109.07036": { | |
| "arxivId": "2109.07036", | |
| "title": "PnP-DETR: Towards Efficient Visual Analysis with Transformers" | |
| }, | |
| "2103.12957": { | |
| "arxivId": "2103.12957", | |
| "title": "Multi-view 3D Reconstruction with Transformers" | |
| }, | |
| "2011.05049": { | |
| "arxivId": "2011.05049", | |
| "title": "Human-Centric Spatio-Temporal Video Grounding With Visual Transformers" | |
| }, | |
| "2011.13118": { | |
| "arxivId": "2011.13118", | |
| "title": "Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks" | |
| }, | |
| "2105.04281": { | |
| "arxivId": "2105.04281", | |
| "title": "Visual Grounding with Transformers" | |
| }, | |
| "2104.12753": { | |
| "arxivId": "2104.12753", | |
| "title": "Vision Transformers with Patch Diversification" | |
| }, | |
| "2106.03714": { | |
| "arxivId": "2106.03714", | |
| "title": "Refiner: Refining Self-attention for Vision Transformers" | |
| }, | |
| "2203.00828": { | |
| "arxivId": "2203.00828", | |
| "title": "3DCTN: 3D Convolution-Transformer Network for Point Cloud Classification" | |
| }, | |
| "2203.13310": { | |
| "arxivId": "2203.13310", | |
| "title": "MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection" | |
| }, | |
| "2103.11390": { | |
| "arxivId": "2103.11390", | |
| "title": "Multi-view analysis of unregistered medical images using cross-view transformers" | |
| }, | |
| "2006.00555": { | |
| "arxivId": "2006.00555", | |
| "title": "Transferring Inductive Biases through Knowledge Distillation" | |
| }, | |
| "2101.12322": { | |
| "arxivId": "2101.12322", | |
| "title": "Position, Padding and Predictions: A Deeper Look at Position Information in CNNs" | |
| }, | |
| "2111.14725": { | |
| "arxivId": "2111.14725", | |
| "title": "Searching the Search Space of Vision Transformer" | |
| }, | |
| "2203.08481": { | |
| "arxivId": "2203.08481", | |
| "title": "Pseudo-Q: Generating Pseudo Language Queries for Visual Grounding" | |
| }, | |
| "2108.05888": { | |
| "arxivId": "2108.05888", | |
| "title": "Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)" | |
| }, | |
| "2110.13083": { | |
| "arxivId": "2110.13083", | |
| "title": "MVT: Multi-view Vision Transformer for 3D Object Recognition" | |
| }, | |
| "2111.11704": { | |
| "arxivId": "2111.11704", | |
| "title": "Deep Point Cloud Reconstruction" | |
| }, | |
| "2211.02006": { | |
| "arxivId": "2211.02006", | |
| "title": "SAP-DETR: Bridging the Gap Between Salient Points and Queries-Based Transformer Detector for Fast Model Convergency" | |
| } | |
| } |