import os import torch import numpy as np from torch.utils.data import Dataset, DataLoader from collections import OrderedDict import matplotlib.pyplot as plt import torch.nn as nn from torch import optim import torch.nn.functional as F # import sys # import random from matplotlib.patches import Rectangle import argparse torch.set_float32_matmul_precision("medium") def main(model_name): if model_name == 'S2NO': from S2NO_pretrain import S2NO_pretrain model = S2NO_pretrain(width = 20).cuda() PATH = './S2NO/600k.ckpt' if model_name == 'FNO': from FNO_pretrain import FNO_pretrain model = FNO_pretrain(features_ = 20).cuda() PATH = './FNO/600k.ckpt' if model_name == 'UNet': from UNet_pretrain import UNet_pretrain model =UNet_pretrain().cuda() PATH = './UNet/600k.ckpt' checkpoint = torch.load(PATH, map_location=lambda storage, loc: storage) model.load_state_dict(checkpoint['state_dict']) homo = np.load('./homo/homo_600k.npy')[0:1,:,:] field_real = torch.tensor(np.real(homo)) field_imag = torch.tensor(np.imag(homo)) model.eval() def inference(data, field_real, field_imag): data = (1500/data - 1)*30 data = torch.tensor(data, dtype=torch.float).cuda() batchsize = field_real.shape[0] sos = data.reshape(1,480, 480, 1).repeat(batchsize,1,1,1).cuda() field = torch.concat([field_real.unsqueeze(-1), field_imag.unsqueeze(-1)], dim=-1).cuda() * 2e-3 src = field pred = model(sos, src) pred = pred * 500 pred = pred[...,0] + 1j*pred[...,1] return pred # 这里定义两块子图的行列范围(row_start:row_end, col_start:col_end) sub1_row_start, sub1_row_end = 323, 343 sub1_col_start, sub1_col_end = 230, 250 sub2_row_start, sub2_row_end = 234, 254 sub2_col_start, sub2_col_end = 184, 204 index = [36] for i in range(len(index)): path = f'./speed/test_{index[i]}.npy' data = np.load(path) # 推理得到 pred pred = inference(data, field_real, field_imag) pred_np = pred.detach().cpu().numpy() pred_real = np.real(pred_np) # 分别画出两个子图并保存 # 子图1 fig, ax = plt.subplots(figsize=(5,5), dpi=300) ax.imshow(np.squeeze(pred_real)[ sub1_row_start:sub1_row_end, sub1_col_start:sub1_col_end], cmap='seismic', vmin=-2000, vmax=2000) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.savefig(f'./result/{model_name}_limb_{index[i]}_small1.pdf', bbox_inches='tight', pad_inches=0) plt.close() # 子图2 fig, ax = plt.subplots(figsize=(5,5), dpi=300) ax.imshow(np.squeeze(pred_real)[ sub2_row_start:sub2_row_end, sub2_col_start:sub2_col_end], cmap='seismic', vmin=-2000, vmax=2000) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.savefig(f'./result/{model_name}_limb_{index[i]}_small2.pdf', bbox_inches='tight', pad_inches=0) plt.close() # 在大图上两个子图相应位置标注出方框 # 注意:matplotlib 中默认 (x, y) 是 (列索引, 行索引), # 因此填入 Rectangle 的时候,需要 (col_start, row_start, width, height) # 画大图 + 标注方框 fig, ax = plt.subplots(figsize=(5,5), dpi=300) ax.imshow(np.squeeze(pred_real), cmap='seismic', vmin=-2000, vmax=2000) # 第一个方框 rect1 = Rectangle((sub1_col_start, sub1_row_start), sub1_col_end - sub1_col_start, # width sub1_row_end - sub1_row_start, # height fill=False, edgecolor='#8CA5D3', linewidth=2) ax.add_patch(rect1) # 第二个方框 rect2 = Rectangle((sub2_col_start, sub2_row_start), sub2_col_end - sub2_col_start, sub2_row_end - sub2_row_start, fill=False, edgecolor='#EDAD81', linewidth=2) ax.add_patch(rect2) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # 保存带方框的大图 plt.savefig(f'./result/{model_name}_limb_{index[i]}_with_box.pdf', bbox_inches='tight', pad_inches=0) plt.close() if __name__ == '__main__': # 解析命令行参数 parser = argparse.ArgumentParser(description='Run model inference with specified model.') parser.add_argument('--model_name', type=str, required=True, choices=['S2NO','FNO','UNet'], help='Name of the model to use (e.g., S2NO)') args = parser.parse_args() # 调用主函数 main(args.model_name)