parkseg12k_train / parkseg-to-fo.py
harpreetsahota's picture
Upload parkseg-to-fo.py
93e7e1d verified
raw
history blame
3.54 kB
"""
Simple script to create a FiftyOne dataset from the parkseg12k dataset with NDVI calculation.
"""
# Import necessary libraries
import fiftyone as fo
import os
import numpy as np
from PIL import Image
from datasets import load_dataset
def main():
# Create a new FiftyOne dataset
name = "parkseg12k_train"
dataset = fo.Dataset(name, overwrite=True, persistent=True)
# Load the Hugging Face dataset
try:
hf_dataset = load_dataset("file://" + os.path.join(os.getcwd(), "parkseg12k_dataset"))
print("Loaded dataset from local storage")
except:
print("Loading from HuggingFace")
hf_dataset = load_dataset("UTEL-UIUC/parkseg12k")
# Create directories for storing images
images_dir = os.path.join(os.getcwd(), "parkseg12k_images_train")
ndvi_dir = os.path.join(os.getcwd(), "parkseg12k_ndvi")
os.makedirs(images_dir, exist_ok=True)
os.makedirs(ndvi_dir, exist_ok=True)
# Only process the train split
split = "train"
print(f"Processing {split} split...")
samples = []
# Process each sample
for i, sample in enumerate(hf_dataset[split]):
if i % 100 == 0:
print(f"Processing sample {i}/{len(hf_dataset[split])}")
# Create paths for saving images
rgb_path = os.path.join(images_dir, f"{i}_rgb.png")
mask_path = os.path.join(images_dir, f"{i}_mask.png")
nir_path = os.path.join(images_dir, f"{i}_nir.png")
ndvi_path = os.path.join(ndvi_dir, f"{i}_ndvi.npy")
# Save images to disk
sample['rgb'].save(rgb_path)
sample['mask'].save(mask_path)
sample['nir'].save(nir_path)
# Calculate NDVI
rgb_array = np.array(sample['rgb'])
nir_array = np.array(sample['nir'])
# Extract red channel and normalize
red = rgb_array[:, :, 0].astype(np.float32) / 255.0
nir = nir_array.astype(np.float32) / 255.0
# Calculate NDVI: (NIR - Red) / (NIR + Red)
numerator = nir - red
denominator = nir + red
# Avoid division by zero
ndvi = np.where(denominator != 0,
numerator / denominator,
0)
# Clip to valid NDVI range
ndvi = np.clip(ndvi, -1, 1)
# Save NDVI array
np.save(ndvi_path, ndvi)
# Create FiftyOne sample
fo_sample = fo.Sample(filepath=rgb_path)
# Add mask as Segmentation using mask_path
fo_sample["segmentation"] = fo.Segmentation(mask_path=mask_path)
# Add NIR as Heatmap using map_path with range [0,1]
fo_sample["nir"] = fo.Heatmap(map_path=nir_path, range=[0, 1])
# Add NDVI as Heatmap with the array directly
fo_sample["ndvi"] = fo.Heatmap(map=ndvi, range=[-1, 1])
# Optional: Add NDVI statistics as metadata
fo_sample["ndvi_mean"] = float(np.mean(ndvi))
fo_sample["ndvi_std"] = float(np.std(ndvi))
fo_sample["ndvi_min"] = float(np.min(ndvi))
fo_sample["ndvi_max"] = float(np.max(ndvi))
# Add to samples list
samples.append(fo_sample)
# Add all samples at once
print(f"Adding {len(samples)} samples to dataset...")
dataset.add_samples(samples)
# Compute metadata and add dynamic fields
dataset.compute_metadata()
dataset.add_dynamic_sample_fields()
return dataset
if __name__ == "__main__":
dataset = main()