Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
10K - 100K
ArXiv:
| """ | |
| Simple script to create a FiftyOne dataset from the parkseg12k dataset with NDVI calculation. | |
| """ | |
| # Import necessary libraries | |
| import fiftyone as fo | |
| import os | |
| import numpy as np | |
| from PIL import Image | |
| from datasets import load_dataset | |
| def main(): | |
| # Create a new FiftyOne dataset | |
| name = "parkseg12k_train" | |
| dataset = fo.Dataset(name, overwrite=True, persistent=True) | |
| # Load the Hugging Face dataset | |
| try: | |
| hf_dataset = load_dataset("file://" + os.path.join(os.getcwd(), "parkseg12k_dataset")) | |
| print("Loaded dataset from local storage") | |
| except: | |
| print("Loading from HuggingFace") | |
| hf_dataset = load_dataset("UTEL-UIUC/parkseg12k") | |
| # Create directories for storing images | |
| images_dir = os.path.join(os.getcwd(), "parkseg12k_images_train") | |
| ndvi_dir = os.path.join(os.getcwd(), "parkseg12k_ndvi") | |
| os.makedirs(images_dir, exist_ok=True) | |
| os.makedirs(ndvi_dir, exist_ok=True) | |
| # Only process the train split | |
| split = "train" | |
| print(f"Processing {split} split...") | |
| samples = [] | |
| # Process each sample | |
| for i, sample in enumerate(hf_dataset[split]): | |
| if i % 100 == 0: | |
| print(f"Processing sample {i}/{len(hf_dataset[split])}") | |
| # Create paths for saving images | |
| rgb_path = os.path.join(images_dir, f"{i}_rgb.png") | |
| mask_path = os.path.join(images_dir, f"{i}_mask.png") | |
| nir_path = os.path.join(images_dir, f"{i}_nir.png") | |
| ndvi_path = os.path.join(ndvi_dir, f"{i}_ndvi.npy") | |
| # Save images to disk | |
| sample['rgb'].save(rgb_path) | |
| sample['mask'].save(mask_path) | |
| sample['nir'].save(nir_path) | |
| # Calculate NDVI | |
| rgb_array = np.array(sample['rgb']) | |
| nir_array = np.array(sample['nir']) | |
| # Extract red channel and normalize | |
| red = rgb_array[:, :, 0].astype(np.float32) / 255.0 | |
| nir = nir_array.astype(np.float32) / 255.0 | |
| # Calculate NDVI: (NIR - Red) / (NIR + Red) | |
| numerator = nir - red | |
| denominator = nir + red | |
| # Avoid division by zero | |
| ndvi = np.where(denominator != 0, | |
| numerator / denominator, | |
| 0) | |
| # Clip to valid NDVI range | |
| ndvi = np.clip(ndvi, -1, 1) | |
| # Save NDVI array | |
| np.save(ndvi_path, ndvi) | |
| # Create FiftyOne sample | |
| fo_sample = fo.Sample(filepath=rgb_path) | |
| # Add mask as Segmentation using mask_path | |
| fo_sample["segmentation"] = fo.Segmentation(mask_path=mask_path) | |
| # Add NIR as Heatmap using map_path with range [0,1] | |
| fo_sample["nir"] = fo.Heatmap(map_path=nir_path, range=[0, 1]) | |
| # Add NDVI as Heatmap with the array directly | |
| fo_sample["ndvi"] = fo.Heatmap(map=ndvi, range=[-1, 1]) | |
| # Optional: Add NDVI statistics as metadata | |
| fo_sample["ndvi_mean"] = float(np.mean(ndvi)) | |
| fo_sample["ndvi_std"] = float(np.std(ndvi)) | |
| fo_sample["ndvi_min"] = float(np.min(ndvi)) | |
| fo_sample["ndvi_max"] = float(np.max(ndvi)) | |
| # Add to samples list | |
| samples.append(fo_sample) | |
| # Add all samples at once | |
| print(f"Adding {len(samples)} samples to dataset...") | |
| dataset.add_samples(samples) | |
| # Compute metadata and add dynamic fields | |
| dataset.compute_metadata() | |
| dataset.add_dynamic_sample_fields() | |
| return dataset | |
| if __name__ == "__main__": | |
| dataset = main() |