| import os | |
| import pandas as pd | |
| import datasets | |
| from glob import glob | |
| import zipfile | |
| class NewDataset(datasets.GeneratorBasedBuilder): | |
| def _info(self): | |
| return datasets.DatasetInfo(features=datasets.Features({'name':datasets.Value('string'),'age':datasets.Value('string'),'label': datasets.features.ClassLabel(names=['male', 'female'])})) | |
| def extract_all(self, dir): | |
| zip_files = glob(dir+'/**/**.zip', recursive=True) | |
| for file in zip_files: | |
| with zipfile.ZipFile(file) as item: | |
| item.extractall('/'.join(file.split('/')[:-1])) | |
| def get_all_files(self, dir): | |
| files = [] | |
| valid_file_ext = ['txt', 'csv', 'tsv', 'xlsx', 'xls', 'xml', 'json', 'jsonl', 'html', 'wav', 'mp3'] | |
| for ext in valid_file_ext: | |
| files += glob(f"{dir}/**/**.{ext}", recursive = True) | |
| return files | |
| def _split_generators(self, dl_manager): | |
| url = [os.path.abspath(os.path.expanduser(dl_manager.manual_dir))] | |
| downloaded_files = url | |
| return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepaths': {'inputs':downloaded_files} })] | |
| def _generate_examples(self, filepaths): | |
| _id = 0 | |
| for i,filepath in enumerate(filepaths['inputs']): | |
| df = pd.read_csv(open(filepath, 'rb'), sep = r',', skiprows = 0, error_bad_lines = False, header = 0) | |
| if len(df.columns) != 3: | |
| continue | |
| df.columns = ['name', 'age', 'gender'] | |
| for _, record in df.iterrows(): | |
| yield str(_id), {'name':record['name'],'age':record['age'],'label':str(record['gender'])} | |
| _id += 1 | |