# Saving Training Results to Hugging Face Hub **⚠️ CRITICAL:** Training environments are ephemeral. ALL results are lost when a job completes unless pushed to the Hub. ## Why Hub Push is Required When running on Hugging Face Jobs: - Environment is temporary - All files deleted on job completion - No local disk persistence - Cannot access results after job ends **Without Hub push, training is completely wasted.** ## Required Configuration ### 1. Training Configuration In your SFTConfig or trainer config: ```python SFTConfig( push_to_hub=True, # Enable Hub push hub_model_id="username/model-name", # Target repository ) ``` ### 2. Job Configuration When submitting the job: ```python hf_jobs("uv", { "script": "train.py", "secrets": {"HF_TOKEN": "$HF_TOKEN"} # Provide authentication }) ``` **The `$HF_TOKEN` placeholder is automatically replaced with your Hugging Face token.** ## Complete Example ```python # train.py # /// script # dependencies = ["trl"] # /// from trl import SFTTrainer, SFTConfig from datasets import load_dataset dataset = load_dataset("trl-lib/Capybara", split="train") # Configure with Hub push config = SFTConfig( output_dir="my-model", num_train_epochs=3, # ✅ CRITICAL: Hub push configuration push_to_hub=True, hub_model_id="myusername/my-trained-model", # Optional: Push strategy push_to_hub_model_id="myusername/my-trained-model", push_to_hub_organization=None, push_to_hub_token=None, # Uses environment token ) trainer = SFTTrainer( model="Qwen/Qwen2.5-0.5B", train_dataset=dataset, args=config, ) trainer.train() # ✅ Push final model trainer.push_to_hub() print("✅ Model saved to: https://huggingface.co/myusername/my-trained-model") ``` **Submit with authentication:** ```python hf_jobs("uv", { "script": "train.py", "flavor": "a10g-large", "timeout": "2h", "secrets": {"HF_TOKEN": "$HF_TOKEN"} # ✅ Required! }) ``` ## What Gets Saved When `push_to_hub=True`: 1. **Model weights** - Final trained parameters 2. **Tokenizer** - Associated tokenizer 3. **Configuration** - Model config (config.json) 4. **Training arguments** - Hyperparameters used 5. **Model card** - Auto-generated documentation 6. **Checkpoints** - If `save_strategy="steps"` enabled ## Checkpoint Saving Save intermediate checkpoints during training: ```python SFTConfig( output_dir="my-model", push_to_hub=True, hub_model_id="username/my-model", # Checkpoint configuration save_strategy="steps", save_steps=100, # Save every 100 steps save_total_limit=3, # Keep only last 3 checkpoints ) ``` **Benefits:** - Resume training if job fails - Compare checkpoint performance - Use intermediate models **Checkpoints are pushed to:** `username/my-model` (same repo) ## Authentication Methods ### Method 1: Automatic Token (Recommended) ```python "secrets": {"HF_TOKEN": "$HF_TOKEN"} ``` Uses your logged-in Hugging Face token automatically. ### Method 2: Explicit Token ```python "secrets": {"HF_TOKEN": "hf_abc123..."} ``` Provide token explicitly (not recommended for security). ### Method 3: Environment Variable ```python "env": {"HF_TOKEN": "hf_abc123..."} ``` Pass as regular environment variable (less secure than secrets). **Always prefer Method 1** for security and convenience. ## Verification Checklist Before submitting any training job, verify: - [ ] `push_to_hub=True` in training config - [ ] `hub_model_id` is specified (format: `username/model-name`) - [ ] `secrets={"HF_TOKEN": "$HF_TOKEN"}` in job config - [ ] Repository name doesn't conflict with existing repos - [ ] You have write access to the target namespace ## Repository Setup ### Automatic Creation If repository doesn't exist, it's created automatically when first pushing. ### Manual Creation Create repository before training: ```python from huggingface_hub import HfApi api = HfApi() api.create_repo( repo_id="username/model-name", repo_type="model", private=False, # or True for private repo ) ``` ### Repository Naming **Valid names:** - `username/my-model` - `username/model-name` - `organization/model-name` **Invalid names:** - `model-name` (missing username) - `username/model name` (spaces not allowed) - `username/MODEL` (uppercase discouraged) ## Troubleshooting ### Error: 401 Unauthorized **Cause:** HF_TOKEN not provided or invalid **Solutions:** 1. Verify `secrets={"HF_TOKEN": "$HF_TOKEN"}` in job config 2. Check you're logged in: `huggingface-cli whoami` 3. Re-login: `huggingface-cli login` ### Error: 403 Forbidden **Cause:** No write access to repository **Solutions:** 1. Check repository namespace matches your username 2. Verify you're a member of organization (if using org namespace) 3. Check repository isn't private (if accessing org repo) ### Error: Repository not found **Cause:** Repository doesn't exist and auto-creation failed **Solutions:** 1. Manually create repository first 2. Check repository name format 3. Verify namespace exists ### Error: Push failed during training **Cause:** Network issues or Hub unavailable **Solutions:** 1. Training continues but final push fails 2. Checkpoints may be saved 3. Re-run push manually after job completes ### Issue: Model saved but not visible **Possible causes:** 1. Repository is private—check https://huggingface.co/username 2. Wrong namespace—verify `hub_model_id` matches login 3. Push still in progress—wait a few minutes ## Manual Push After Training If training completes but push fails, push manually: ```python from transformers import AutoModel, AutoTokenizer # Load from local checkpoint model = AutoModel.from_pretrained("./output_dir") tokenizer = AutoTokenizer.from_pretrained("./output_dir") # Push to Hub model.push_to_hub("username/model-name", token="hf_abc123...") tokenizer.push_to_hub("username/model-name", token="hf_abc123...") ``` **Note:** Only possible if job hasn't completed (files still exist). ## Best Practices 1. **Always enable `push_to_hub=True`** 2. **Use checkpoint saving** for long training runs 3. **Verify Hub push** in logs before job completes 4. **Set appropriate `save_total_limit`** to avoid excessive checkpoints 5. **Use descriptive repo names** (e.g., `qwen-capybara-sft` not `model1`) 6. **Add model card** with training details 7. **Tag models** with relevant tags (e.g., `text-generation`, `fine-tuned`) ## Monitoring Push Progress Check logs for push progress: ```python hf_jobs("logs", {"job_id": "your-job-id"}) ``` **Look for:** ``` Pushing model to username/model-name... Upload file pytorch_model.bin: 100% ✅ Model pushed successfully ``` ## Example: Full Production Setup ```python # production_train.py # /// script # dependencies = ["trl>=0.12.0", "peft>=0.7.0"] # /// from datasets import load_dataset from peft import LoraConfig from trl import SFTTrainer, SFTConfig import os # Verify token is available assert "HF_TOKEN" in os.environ, "HF_TOKEN not found in environment!" # Load dataset dataset = load_dataset("trl-lib/Capybara", split="train") print(f"✅ Dataset loaded: {len(dataset)} examples") # Configure with comprehensive Hub settings config = SFTConfig( output_dir="qwen-capybara-sft", # Hub configuration push_to_hub=True, hub_model_id="myusername/qwen-capybara-sft", hub_strategy="checkpoint", # Push checkpoints # Checkpoint configuration save_strategy="steps", save_steps=100, save_total_limit=3, # Training settings num_train_epochs=3, per_device_train_batch_size=4, # Logging logging_steps=10, logging_first_step=True, ) # Train with LoRA trainer = SFTTrainer( model="Qwen/Qwen2.5-0.5B", train_dataset=dataset, args=config, peft_config=LoraConfig(r=16, lora_alpha=32), ) print("🚀 Starting training...") trainer.train() print("💾 Pushing final model to Hub...") trainer.push_to_hub() print("✅ Training complete!") print(f"Model available at: https://huggingface.co/myusername/qwen-capybara-sft") ``` **Submit:** ```python hf_jobs("uv", { "script": "production_train.py", "flavor": "a10g-large", "timeout": "6h", "secrets": {"HF_TOKEN": "$HF_TOKEN"} }) ``` ## Key Takeaway **Without `push_to_hub=True` and `secrets={"HF_TOKEN": "$HF_TOKEN"}`, all training results are permanently lost.** Always verify both are configured before submitting any training job.