initial commit
Browse files- README.md +126 -0
- build.py +23 -0
- data/data.jsonl.gz +3 -0
README.md
CHANGED
|
@@ -1,3 +1,129 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- text-retrieval
|
| 5 |
+
- text-classification
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
tags:
|
| 9 |
+
- e-commerce
|
| 10 |
+
- search
|
| 11 |
+
- product-search
|
| 12 |
+
- relevance
|
| 13 |
+
- information-retrieval
|
| 14 |
+
size_categories:
|
| 15 |
+
- 100K<n<1M
|
| 16 |
+
pretty_name: WANDS (Wayfair ANnotation Dataset)
|
| 17 |
---
|
| 18 |
+
|
| 19 |
+
# Dataset Card for WANDS (Wayfair ANnotation Dataset)
|
| 20 |
+
|
| 21 |
+
## Dataset Summary
|
| 22 |
+
|
| 23 |
+
WANDS (Wayfair ANnotation Dataset) is the largest and richest publicly available dataset for e-commerce product search relevance. Created by Wayfair, this dataset enables objective benchmarking and evaluation of search engines in the e-commerce domain.
|
| 24 |
+
|
| 25 |
+
The dataset contains:
|
| 26 |
+
- **233,448** human-annotated (query, product) relevance judgments
|
| 27 |
+
- **42,994** candidate products with rich metadata
|
| 28 |
+
- **480** unique search query strings
|
| 29 |
+
|
| 30 |
+
Published as a companion to the ECIR 2022 paper "WANDS: Dataset for Product Search Relevance Assessment" by Yan Chen, Shujian Liu, Zheng Liu, Weiyi Sun, Linas Baltrunas and Benjamin Schroeder.
|
| 31 |
+
|
| 32 |
+
## Supported Tasks
|
| 33 |
+
|
| 34 |
+
- **Product Search Relevance**: Evaluate whether a product is relevant to a given search query
|
| 35 |
+
- **E-commerce Information Retrieval**: Train and benchmark retrieval models for product search
|
| 36 |
+
- **Learning-to-Rank**: Build ranking models for e-commerce search results
|
| 37 |
+
|
| 38 |
+
## Languages
|
| 39 |
+
|
| 40 |
+
The dataset is in English.
|
| 41 |
+
|
| 42 |
+
## Dataset Structure
|
| 43 |
+
|
| 44 |
+
### Data Instances
|
| 45 |
+
|
| 46 |
+
Each instance represents a query-product pair with human-annotated relevance judgment:
|
| 47 |
+
|
| 48 |
+
```json
|
| 49 |
+
{
|
| 50 |
+
"id": 0,
|
| 51 |
+
"query_id": 0,
|
| 52 |
+
"product_id": 25434,
|
| 53 |
+
"label": 2,
|
| 54 |
+
"product_name": "21.7 '' w waiting room chair with wood frame",
|
| 55 |
+
"product_class": "Waiting Room Chairs",
|
| 56 |
+
"category hierarchy": "Commercial Business Furniture / Commercial Office Furniture / Office Seating / Waiting Room Chairs / Wood Waiting Room Chairs",
|
| 57 |
+
"product_description": "this is a salon chair , barber chair for a hairstylist . it is cheap , classic , hydraulic pump spa equipment .",
|
| 58 |
+
"product_features": "backupholsterycolor : champagne|primarymaterial : wood|...",
|
| 59 |
+
"rating_count": null,
|
| 60 |
+
"average_rating": null,
|
| 61 |
+
"review_count": null,
|
| 62 |
+
"query": "salon chair",
|
| 63 |
+
"query_class": "Massage Chairs"
|
| 64 |
+
}
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
### Data Fields
|
| 68 |
+
|
| 69 |
+
- `id` (int): Unique identifier for the query-product pair
|
| 70 |
+
- `query_id` (int): Identifier for the search query
|
| 71 |
+
- `product_id` (int): Identifier for the product
|
| 72 |
+
- `label` (int): Human-annotated relevance label
|
| 73 |
+
- `2`: Exact match (product is highly relevant)
|
| 74 |
+
- `1`: Partial match (product is somewhat relevant)
|
| 75 |
+
- `0`: Irrelevant (product is not relevant)
|
| 76 |
+
- `product_name` (string): Product title/name
|
| 77 |
+
- `product_class` (string): Product classification/type
|
| 78 |
+
- `category hierarchy` (string): Full category path separated by " / "
|
| 79 |
+
- `product_description` (string): Product description text
|
| 80 |
+
- `product_features` (string): Product attributes in pipe-delimited format (key:value pairs separated by "|")
|
| 81 |
+
- `rating_count` (int/null): Number of ratings the product has received
|
| 82 |
+
- `average_rating` (float/null): Average rating score
|
| 83 |
+
- `review_count` (int/null): Number of reviews
|
| 84 |
+
- `query` (string): The search query text
|
| 85 |
+
- `query_class` (string): Predicted product class for the query
|
| 86 |
+
|
| 87 |
+
### Data Splits
|
| 88 |
+
|
| 89 |
+
The dataset is provided as a single split containing all 233,448 annotated query-product pairs.
|
| 90 |
+
|
| 91 |
+
#### Annotation Guidelines
|
| 92 |
+
|
| 93 |
+
Relevance judgments follow three levels:
|
| 94 |
+
- **Exact**: Product matches the query intent precisely
|
| 95 |
+
- **Partial**: Product is related but not a perfect match
|
| 96 |
+
- **Irrelevant**: Product does not match the query intent
|
| 97 |
+
|
| 98 |
+
### Licensing Information
|
| 99 |
+
|
| 100 |
+
This dataset is released under the Apache License 2.0.
|
| 101 |
+
|
| 102 |
+
### Citation Information
|
| 103 |
+
|
| 104 |
+
```bibtex
|
| 105 |
+
@inproceedings{chen2022wands,
|
| 106 |
+
title={WANDS: Dataset for Product Search Relevance Assessment},
|
| 107 |
+
author={Chen, Yan and Liu, Shujian and Liu, Zheng and Sun, Weiyi and Baltrunas, Linas and Schroeder, Benjamin},
|
| 108 |
+
booktitle={Advances in Information Retrieval: 44th European Conference on IR Research, ECIR 2022},
|
| 109 |
+
pages={},
|
| 110 |
+
year={2022},
|
| 111 |
+
organization={Springer}
|
| 112 |
+
}
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
## Dataset Loading
|
| 116 |
+
|
| 117 |
+
Load this dataset using the Hugging Face Datasets library:
|
| 118 |
+
|
| 119 |
+
```python
|
| 120 |
+
from datasets import load_dataset
|
| 121 |
+
|
| 122 |
+
dataset = load_dataset("shuttie/wands")
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
## Additional Resources
|
| 126 |
+
|
| 127 |
+
- [GitHub Repository](https://github.com/wayfair/WANDS)
|
| 128 |
+
- [Wayfair Tech Blog Post](https://www.aboutwayfair.com/careers/tech-blog/wayfair-releases-wands-the-largest-and-richest-publicly-available-dataset-for-e-commerce-product-search-relevance)
|
| 129 |
+
- [Paper on Papers with Code](https://paperswithcode.com/dataset/wands)
|
build.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import polars as pl
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
MAPPING = {"Exact": 2, "Partial": 1, "Irrelevant": 0}
|
| 6 |
+
|
| 7 |
+
if __name__ == "__main__":
|
| 8 |
+
parser = argparse.ArgumentParser()
|
| 9 |
+
parser.add_argument(
|
| 10 |
+
"--source", type=str, required=True, help="path to WANDS dataset"
|
| 11 |
+
)
|
| 12 |
+
args = parser.parse_args()
|
| 13 |
+
|
| 14 |
+
label = pl.read_csv(os.path.join(args.source, "label.csv"), separator="\t")
|
| 15 |
+
product = pl.read_csv(os.path.join(args.source, "product.csv"), separator="\t")
|
| 16 |
+
query = pl.read_csv(os.path.join(args.source, "query.csv"), separator="\t")
|
| 17 |
+
|
| 18 |
+
merged = label.join(product, on=pl.col("product_id"))
|
| 19 |
+
merged = merged.join(query, on=pl.col("query_id"))
|
| 20 |
+
merged = merged.with_columns(label=pl.col("label").replace(MAPPING).cast(pl.Int32))
|
| 21 |
+
print(merged.describe())
|
| 22 |
+
|
| 23 |
+
merged.write_ndjson("data.jsonl")
|
data/data.jsonl.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:71c3484fcf09ecdb1972dddd25e8f66e2f52f625d9c3b1a88438e773eefdb0ee
|
| 3 |
+
size 100323586
|