shuttie commited on
Commit
85c820d
·
1 Parent(s): 7dba798

initial commit

Browse files
Files changed (3) hide show
  1. README.md +126 -0
  2. build.py +23 -0
  3. data/data.jsonl.gz +3 -0
README.md CHANGED
@@ -1,3 +1,129 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ task_categories:
4
+ - text-retrieval
5
+ - text-classification
6
+ language:
7
+ - en
8
+ tags:
9
+ - e-commerce
10
+ - search
11
+ - product-search
12
+ - relevance
13
+ - information-retrieval
14
+ size_categories:
15
+ - 100K<n<1M
16
+ pretty_name: WANDS (Wayfair ANnotation Dataset)
17
  ---
18
+
19
+ # Dataset Card for WANDS (Wayfair ANnotation Dataset)
20
+
21
+ ## Dataset Summary
22
+
23
+ WANDS (Wayfair ANnotation Dataset) is the largest and richest publicly available dataset for e-commerce product search relevance. Created by Wayfair, this dataset enables objective benchmarking and evaluation of search engines in the e-commerce domain.
24
+
25
+ The dataset contains:
26
+ - **233,448** human-annotated (query, product) relevance judgments
27
+ - **42,994** candidate products with rich metadata
28
+ - **480** unique search query strings
29
+
30
+ Published as a companion to the ECIR 2022 paper "WANDS: Dataset for Product Search Relevance Assessment" by Yan Chen, Shujian Liu, Zheng Liu, Weiyi Sun, Linas Baltrunas and Benjamin Schroeder.
31
+
32
+ ## Supported Tasks
33
+
34
+ - **Product Search Relevance**: Evaluate whether a product is relevant to a given search query
35
+ - **E-commerce Information Retrieval**: Train and benchmark retrieval models for product search
36
+ - **Learning-to-Rank**: Build ranking models for e-commerce search results
37
+
38
+ ## Languages
39
+
40
+ The dataset is in English.
41
+
42
+ ## Dataset Structure
43
+
44
+ ### Data Instances
45
+
46
+ Each instance represents a query-product pair with human-annotated relevance judgment:
47
+
48
+ ```json
49
+ {
50
+ "id": 0,
51
+ "query_id": 0,
52
+ "product_id": 25434,
53
+ "label": 2,
54
+ "product_name": "21.7 '' w waiting room chair with wood frame",
55
+ "product_class": "Waiting Room Chairs",
56
+ "category hierarchy": "Commercial Business Furniture / Commercial Office Furniture / Office Seating / Waiting Room Chairs / Wood Waiting Room Chairs",
57
+ "product_description": "this is a salon chair , barber chair for a hairstylist . it is cheap , classic , hydraulic pump spa equipment .",
58
+ "product_features": "backupholsterycolor : champagne|primarymaterial : wood|...",
59
+ "rating_count": null,
60
+ "average_rating": null,
61
+ "review_count": null,
62
+ "query": "salon chair",
63
+ "query_class": "Massage Chairs"
64
+ }
65
+ ```
66
+
67
+ ### Data Fields
68
+
69
+ - `id` (int): Unique identifier for the query-product pair
70
+ - `query_id` (int): Identifier for the search query
71
+ - `product_id` (int): Identifier for the product
72
+ - `label` (int): Human-annotated relevance label
73
+ - `2`: Exact match (product is highly relevant)
74
+ - `1`: Partial match (product is somewhat relevant)
75
+ - `0`: Irrelevant (product is not relevant)
76
+ - `product_name` (string): Product title/name
77
+ - `product_class` (string): Product classification/type
78
+ - `category hierarchy` (string): Full category path separated by " / "
79
+ - `product_description` (string): Product description text
80
+ - `product_features` (string): Product attributes in pipe-delimited format (key:value pairs separated by "|")
81
+ - `rating_count` (int/null): Number of ratings the product has received
82
+ - `average_rating` (float/null): Average rating score
83
+ - `review_count` (int/null): Number of reviews
84
+ - `query` (string): The search query text
85
+ - `query_class` (string): Predicted product class for the query
86
+
87
+ ### Data Splits
88
+
89
+ The dataset is provided as a single split containing all 233,448 annotated query-product pairs.
90
+
91
+ #### Annotation Guidelines
92
+
93
+ Relevance judgments follow three levels:
94
+ - **Exact**: Product matches the query intent precisely
95
+ - **Partial**: Product is related but not a perfect match
96
+ - **Irrelevant**: Product does not match the query intent
97
+
98
+ ### Licensing Information
99
+
100
+ This dataset is released under the Apache License 2.0.
101
+
102
+ ### Citation Information
103
+
104
+ ```bibtex
105
+ @inproceedings{chen2022wands,
106
+ title={WANDS: Dataset for Product Search Relevance Assessment},
107
+ author={Chen, Yan and Liu, Shujian and Liu, Zheng and Sun, Weiyi and Baltrunas, Linas and Schroeder, Benjamin},
108
+ booktitle={Advances in Information Retrieval: 44th European Conference on IR Research, ECIR 2022},
109
+ pages={},
110
+ year={2022},
111
+ organization={Springer}
112
+ }
113
+ ```
114
+
115
+ ## Dataset Loading
116
+
117
+ Load this dataset using the Hugging Face Datasets library:
118
+
119
+ ```python
120
+ from datasets import load_dataset
121
+
122
+ dataset = load_dataset("shuttie/wands")
123
+ ```
124
+
125
+ ## Additional Resources
126
+
127
+ - [GitHub Repository](https://github.com/wayfair/WANDS)
128
+ - [Wayfair Tech Blog Post](https://www.aboutwayfair.com/careers/tech-blog/wayfair-releases-wands-the-largest-and-richest-publicly-available-dataset-for-e-commerce-product-search-relevance)
129
+ - [Paper on Papers with Code](https://paperswithcode.com/dataset/wands)
build.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import polars as pl
3
+ import os
4
+
5
+ MAPPING = {"Exact": 2, "Partial": 1, "Irrelevant": 0}
6
+
7
+ if __name__ == "__main__":
8
+ parser = argparse.ArgumentParser()
9
+ parser.add_argument(
10
+ "--source", type=str, required=True, help="path to WANDS dataset"
11
+ )
12
+ args = parser.parse_args()
13
+
14
+ label = pl.read_csv(os.path.join(args.source, "label.csv"), separator="\t")
15
+ product = pl.read_csv(os.path.join(args.source, "product.csv"), separator="\t")
16
+ query = pl.read_csv(os.path.join(args.source, "query.csv"), separator="\t")
17
+
18
+ merged = label.join(product, on=pl.col("product_id"))
19
+ merged = merged.join(query, on=pl.col("query_id"))
20
+ merged = merged.with_columns(label=pl.col("label").replace(MAPPING).cast(pl.Int32))
21
+ print(merged.describe())
22
+
23
+ merged.write_ndjson("data.jsonl")
data/data.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71c3484fcf09ecdb1972dddd25e8f66e2f52f625d9c3b1a88438e773eefdb0ee
3
+ size 100323586