Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
100K - 1M
License:
Commit
·
1087fc1
1
Parent(s):
610bdae
Delete loading script
Browse files
imdb.py
DELETED
|
@@ -1,111 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
# Lint as: python3
|
| 17 |
-
"""IMDB movie reviews dataset."""
|
| 18 |
-
|
| 19 |
-
import datasets
|
| 20 |
-
from datasets.tasks import TextClassification
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
_DESCRIPTION = """\
|
| 24 |
-
Large Movie Review Dataset.
|
| 25 |
-
This is a dataset for binary sentiment classification containing substantially \
|
| 26 |
-
more data than previous benchmark datasets. We provide a set of 25,000 highly \
|
| 27 |
-
polar movie reviews for training, and 25,000 for testing. There is additional \
|
| 28 |
-
unlabeled data for use as well.\
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
-
_CITATION = """\
|
| 32 |
-
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
|
| 33 |
-
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},
|
| 34 |
-
title = {Learning Word Vectors for Sentiment Analysis},
|
| 35 |
-
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
|
| 36 |
-
month = {June},
|
| 37 |
-
year = {2011},
|
| 38 |
-
address = {Portland, Oregon, USA},
|
| 39 |
-
publisher = {Association for Computational Linguistics},
|
| 40 |
-
pages = {142--150},
|
| 41 |
-
url = {http://www.aclweb.org/anthology/P11-1015}
|
| 42 |
-
}
|
| 43 |
-
"""
|
| 44 |
-
|
| 45 |
-
_DOWNLOAD_URL = "https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz"
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
class IMDBReviewsConfig(datasets.BuilderConfig):
|
| 49 |
-
"""BuilderConfig for IMDBReviews."""
|
| 50 |
-
|
| 51 |
-
def __init__(self, **kwargs):
|
| 52 |
-
"""BuilderConfig for IMDBReviews.
|
| 53 |
-
|
| 54 |
-
Args:
|
| 55 |
-
**kwargs: keyword arguments forwarded to super.
|
| 56 |
-
"""
|
| 57 |
-
super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
class Imdb(datasets.GeneratorBasedBuilder):
|
| 61 |
-
"""IMDB movie reviews dataset."""
|
| 62 |
-
|
| 63 |
-
BUILDER_CONFIGS = [
|
| 64 |
-
IMDBReviewsConfig(
|
| 65 |
-
name="plain_text",
|
| 66 |
-
description="Plain text",
|
| 67 |
-
)
|
| 68 |
-
]
|
| 69 |
-
|
| 70 |
-
def _info(self):
|
| 71 |
-
return datasets.DatasetInfo(
|
| 72 |
-
description=_DESCRIPTION,
|
| 73 |
-
features=datasets.Features(
|
| 74 |
-
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])}
|
| 75 |
-
),
|
| 76 |
-
supervised_keys=None,
|
| 77 |
-
homepage="http://ai.stanford.edu/~amaas/data/sentiment/",
|
| 78 |
-
citation=_CITATION,
|
| 79 |
-
task_templates=[TextClassification(text_column="text", label_column="label")],
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
def _split_generators(self, dl_manager):
|
| 83 |
-
archive = dl_manager.download(_DOWNLOAD_URL)
|
| 84 |
-
return [
|
| 85 |
-
datasets.SplitGenerator(
|
| 86 |
-
name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train"}
|
| 87 |
-
),
|
| 88 |
-
datasets.SplitGenerator(
|
| 89 |
-
name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "test"}
|
| 90 |
-
),
|
| 91 |
-
datasets.SplitGenerator(
|
| 92 |
-
name=datasets.Split("unsupervised"),
|
| 93 |
-
gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train", "labeled": False},
|
| 94 |
-
),
|
| 95 |
-
]
|
| 96 |
-
|
| 97 |
-
def _generate_examples(self, files, split, labeled=True):
|
| 98 |
-
"""Generate aclImdb examples."""
|
| 99 |
-
# For labeled examples, extract the label from the path.
|
| 100 |
-
if labeled:
|
| 101 |
-
label_mapping = {"pos": 1, "neg": 0}
|
| 102 |
-
for path, f in files:
|
| 103 |
-
if path.startswith(f"aclImdb/{split}"):
|
| 104 |
-
label = label_mapping.get(path.split("/")[2])
|
| 105 |
-
if label is not None:
|
| 106 |
-
yield path, {"text": f.read().decode("utf-8"), "label": label}
|
| 107 |
-
else:
|
| 108 |
-
for path, f in files:
|
| 109 |
-
if path.startswith(f"aclImdb/{split}"):
|
| 110 |
-
if path.split("/")[2] == "unsup":
|
| 111 |
-
yield path, {"text": f.read().decode("utf-8"), "label": -1}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|