Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Faroese
Size:
1K<n<10K
License:
| # coding=utf-8 | |
| # Copyright 2020 HuggingFace Datasets Authors. | |
| # Modified by Vésteinn Snæbjarnarson 2021 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| LABELS = [ | |
| 'B-Date', | |
| 'B-Location', | |
| 'B-Miscellaneous', | |
| 'B-Money', | |
| 'B-Organization', | |
| 'B-Percent', | |
| 'B-Person', | |
| 'B-Time', | |
| 'I-Date', | |
| 'I-Location', | |
| 'I-Miscellaneous', | |
| 'I-Money', | |
| 'I-Organization', | |
| 'I-Percent', | |
| 'I-Person', | |
| 'I-Time', | |
| 'O', | |
| ] | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| @misc{sosialurin-ner, | |
| title = {}, | |
| author = {}, | |
| url = {}, | |
| year = {2022} } | |
| """ | |
| _DESCRIPTION = """\ | |
| The corpus that has been created consists of ca. 100.000 words of text from the [Faroese] newspaper Sosialurin. Each word is tagged with named entity information | |
| """ | |
| _URL = "https://huggingface.co/datasets/vesteinn/sosialurin-faroese-ner/raw/main/" | |
| _TRAINING_FILE = "sosialurin.faroese.ner.train.txt" | |
| class SosialurinNERConfig(datasets.BuilderConfig): | |
| """BuilderConfig for sosialurin-faroese-ner""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig for sosialurin-faroese-ner. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(SosialurinNERConfig, self).__init__(**kwargs) | |
| class SosialurinNER(datasets.GeneratorBasedBuilder): | |
| """sosialurin-faroese-ner dataset.""" | |
| BUILDER_CONFIGS = [ | |
| SosialurinNERConfig(name="sosialurin-faroese-ner", version=datasets.Version("0.1.0"), description="sosialurin-faroese-ner dataset"), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=LABELS | |
| ) | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| urls_to_download = { | |
| "train": f"{_URL}{_TRAINING_FILE}", | |
| } | |
| downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
| ] | |
| def _generate_examples(self, filepath): | |
| logger.info("⏳ Generating examples from = %s", filepath) | |
| with open(filepath, encoding="utf-8") as f: | |
| guid = 0 | |
| tokens = [] | |
| ner_tags = [] | |
| for line in f: | |
| if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
| if tokens: | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |
| guid += 1 | |
| tokens = [] | |
| ner_tags = [] | |
| else: | |
| # tokens are tab separated | |
| splits = line.split("\t") | |
| tokens.append(splits[0]) | |
| try: | |
| ner_tags.append(splits[1].rstrip()) | |
| except: | |
| print(splits) | |
| raise | |
| # last example | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |