farooqhasanDA commited on
Commit
b1a9cd9
·
verified ·
1 Parent(s): 06cb109

Add README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -20
README.md CHANGED
@@ -1,46 +1,51 @@
1
 
 
 
 
 
 
 
 
 
 
 
2
  # Logistic Regression Model for Binary Classification
3
 
4
- This repository hosts a simple Logistic Regression model trained on a synthetic dataset for binary classification. The model is built using `scikit-learn` and saved using `joblib`.
5
 
6
  ## Model Description
7
 
8
- - **Model Type**: Logistic Regression (for binary classification)
9
- - **Framework**: Scikit-learn
10
- - **Training Data**: Synthetic dataset generated using `sklearn.datasets.make_classification`.
11
- - **Purpose**: Demonstrates the process of saving and uploading a basic Scikit-learn model to the Hugging Face Hub.
12
 
13
- ## How to Use
14
 
15
- To load and use this model, you can follow these steps in your Python environment:
16
 
17
  ```python
18
  from huggingface_hub import hf_hub_download
19
  import joblib
20
  import numpy as np
21
 
22
- # Define the repository ID and the model file path
23
- repo_id = "farooqhasanDA/logistic_regression_model-sklearn-model" # Replace with your actual repo_id
24
- filename = "models/logistic_regression_model.joblib"
25
 
26
  # Download the model file
27
- model_path = hf_hub_download(repo_id=repo_id, filename=filename)
28
 
29
  # Load the model
30
  loaded_model = joblib.load(model_path)
31
 
32
- # Example usage: Make a prediction
33
- # Create a dummy input similar to the training data (e.g., 4 features)
34
- dummy_input = np.array([[0.5, -0.2, 1.1, -0.7]])
35
 
36
- prediction = loaded_model.predict(dummy_input)
37
- prediction_proba = loaded_model.predict_proba(dummy_input)
38
 
39
- print(f"Prediction: {prediction[0]}")
40
- print(f"Prediction Probabilities: {prediction_proba[0]}")
41
  ```
42
 
43
  ## License
44
 
45
- This project is licensed under the Apache License 2.0. See the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) file for details.
46
-
 
1
 
2
+ ---
3
+ title: Logistic Regression Model (Scikit-learn)
4
+ license: apache-2.0
5
+ tags:
6
+ - scikit-learn
7
+ - logistic-regression
8
+ - classification
9
+ - binary-classification
10
+ ---
11
+
12
  # Logistic Regression Model for Binary Classification
13
 
14
+ This repository hosts a simple Logistic Regression model trained on synthetic data for a binary classification task. It's built using `scikit-learn` and saved using `joblib`.
15
 
16
  ## Model Description
17
 
18
+ This model is designed to classify data points into one of two categories (0 or 1) based on 4 input features. It serves as a demonstration for deploying `scikit-learn` models to the Hugging Face Hub.
 
 
 
19
 
20
+ ## How to Load and Use the Model
21
 
22
+ You can easily load and use this model in your Python environment:
23
 
24
  ```python
25
  from huggingface_hub import hf_hub_download
26
  import joblib
27
  import numpy as np
28
 
29
+ # Define the model repository ID and filename within the repo
30
+ repo_id = "farooqhasanDA/logistic-regression-sklearn-model" # Your Hugging Face repository ID
31
+ model_filename_in_repo = "models/logistic_regression_model.joblib"
32
 
33
  # Download the model file
34
+ model_path = hf_hub_download(repo_id=repo_id, filename=model_filename_in_repo)
35
 
36
  # Load the model
37
  loaded_model = joblib.load(model_path)
38
 
39
+ # Example prediction with synthetic input (4 features)
40
+ X_new = np.array([[0.1, 0.2, -0.3, 0.4]]) # Replace with your actual input
 
41
 
42
+ predicted_class = loaded_model.predict(X_new)
43
+ predicted_probabilities = loaded_model.predict_proba(X_new)
44
 
45
+ print(f"Predicted Class: {predicted_class[0]}")
46
+ print(f"Predicted Probabilities: {predicted_probabilities[0]}")
47
  ```
48
 
49
  ## License
50
 
51
+ This model is released under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).