Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,225 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
## How to Get Started with the Model
|
| 71 |
|
| 72 |
Use the code below to get started with the model.
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
|
| 167 |
-
#### Software
|
| 168 |
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
|
|
|
|
| 172 |
|
| 173 |
-
|
|
|
|
| 174 |
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
-
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
|
| 181 |
-
|
| 182 |
|
| 183 |
-
## Glossary [optional]
|
| 184 |
|
| 185 |
-
|
| 186 |
|
| 187 |
-
|
| 188 |
|
| 189 |
-
|
| 190 |
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
|
| 195 |
-
[More Information Needed]
|
| 196 |
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: mit
|
| 3 |
+
license_link: https://huggingface.co/microsoft/Florence-2-large/resolve/main/LICENSE
|
| 4 |
+
pipeline_tag: image-text-to-text
|
| 5 |
+
tags:
|
| 6 |
+
- vision
|
| 7 |
library_name: transformers
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
+
> [!NOTE]
|
| 11 |
+
> This is the repository for official transformers converted checkpoint of Microsoft's Florence model.
|
| 12 |
|
| 13 |
+
# Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks
|
| 14 |
|
| 15 |
+
## Model Summary
|
| 16 |
|
| 17 |
+
**This is a continued pretrained version of Florence-2-large model with 4k context length, only 0.1B samples are used for continue pretraining, thus it might not be trained well. In addition, OCR task has been updated with line separator ('\n'). COCO OD AP 39.8**
|
| 18 |
|
| 19 |
+
Florence-2 is an advanced vision foundation model that uses a prompt-based approach to handle a wide range of vision and vision-language tasks. Florence-2 can interpret simple text prompts to perform tasks like captioning, object detection, and segmentation. It leverages our FLD-5B dataset, containing 5.4 billion annotations across 126 million images, to master multi-task learning. The model's sequence-to-sequence architecture enables it to excel in both zero-shot and fine-tuned settings, proving to be a competitive vision foundation model.
|
| 20 |
|
| 21 |
+
Resources and Technical Documentation:
|
| 22 |
+
+ [Florence-2 technical report](https://arxiv.org/abs/2311.06242).
|
| 23 |
+
+ [Jupyter Notebook for inference and visualization of Florence-2-large](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
| Model | Model size | Model Description |
|
| 26 |
+
| ------- | ------------- | ------------- |
|
| 27 |
+
| Florence-2-base[[HF]](https://huggingface.co/florence-community/Florence-2-base) | 0.23B | Pretrained model with FLD-5B
|
| 28 |
+
| Florence-2-large[[HF]](https://huggingface.co/florence-community/Florence-2-large) | 0.77B | Pretrained model with FLD-5B
|
| 29 |
+
| Florence-2-base-ft[[HF]](https://huggingface.co/florence-community/Florence-2-base-ft) | 0.23B | Finetuned model on a colletion of downstream tasks
|
| 30 |
+
| Florence-2-large-ft[[HF]](https://huggingface.co/florence-community/Florence-2-large-ft) | 0.77B | Finetuned model on a colletion of downstream tasks
|
| 31 |
+
|
| 32 |
## How to Get Started with the Model
|
| 33 |
|
| 34 |
Use the code below to get started with the model.
|
| 35 |
|
| 36 |
+
```python
|
| 37 |
+
import torch
|
| 38 |
+
import requests
|
| 39 |
+
from PIL import Image
|
| 40 |
+
from transformers import AutoProcessor, Florence2ForConditionalGeneration, BitsAndBytesConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
| 42 |
|
| 43 |
+
model = Florence2ForConditionalGeneration.from_pretrained(
|
| 44 |
+
"florence-community/Florence-2-large",
|
| 45 |
+
dtype=torch.bfloat16,
|
| 46 |
+
device_map="auto",
|
| 47 |
+
)
|
| 48 |
+
processor = AutoProcessor.from_pretrained("florence-community/Florence-2-large")
|
| 49 |
|
| 50 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
| 51 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
| 52 |
|
| 53 |
+
task_prompt = "<OD>"
|
| 54 |
+
inputs = processor(text=task_prompt, images=image, return_tensors="pt").to(model.device, torch.bfloat16)
|
| 55 |
|
| 56 |
+
generated_ids = model.generate(
|
| 57 |
+
**inputs,
|
| 58 |
+
max_new_tokens=1024,
|
| 59 |
+
num_beams=3,
|
| 60 |
+
)
|
| 61 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 62 |
|
| 63 |
+
image_size = image.size
|
| 64 |
+
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=image_size)
|
| 65 |
|
| 66 |
+
print(parsed_answer)
|
| 67 |
|
| 68 |
+
```
|
| 69 |
|
|
|
|
| 70 |
|
| 71 |
+
## Tasks
|
| 72 |
|
| 73 |
+
This model is capable of performing different tasks through changing the prompts.
|
| 74 |
|
| 75 |
+
First, let's define a function to run a prompt.
|
| 76 |
|
| 77 |
+
Here are the tasks `Florence-2` could perform:
|
| 78 |
+
|
| 79 |
+
<details>
|
| 80 |
+
<summary> Click to expand </summary>
|
| 81 |
|
|
|
|
| 82 |
|
|
|
|
| 83 |
|
| 84 |
+
### Caption
|
| 85 |
+
```python
|
| 86 |
+
prompt = "<CAPTION>"
|
| 87 |
+
run_example(prompt)
|
| 88 |
+
```
|
| 89 |
|
| 90 |
+
### Detailed Caption
|
| 91 |
+
```python
|
| 92 |
+
prompt = "<DETAILED_CAPTION>"
|
| 93 |
+
run_example(prompt)
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
### More Detailed Caption
|
| 97 |
+
```python
|
| 98 |
+
prompt = "<MORE_DETAILED_CAPTION>"
|
| 99 |
+
run_example(prompt)
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
### Caption to Phrase Grounding
|
| 103 |
+
caption to phrase grounding task requires additional text input, i.e. caption.
|
| 104 |
+
|
| 105 |
+
Caption to phrase grounding results format:
|
| 106 |
+
{'\<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}}
|
| 107 |
+
```python
|
| 108 |
+
task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
|
| 109 |
+
results = run_example(task_prompt, text_input="A green car parked in front of a yellow building.")
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
### Object Detection
|
| 113 |
+
|
| 114 |
+
OD results format:
|
| 115 |
+
{'\<OD>': {'bboxes': [[x1, y1, x2, y2], ...],
|
| 116 |
+
'labels': ['label1', 'label2', ...]} }
|
| 117 |
+
|
| 118 |
+
```python
|
| 119 |
+
prompt = "<OD>"
|
| 120 |
+
run_example(prompt)
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
### Dense Region Caption
|
| 124 |
+
Dense region caption results format:
|
| 125 |
+
{'\<DENSE_REGION_CAPTION>' : {'bboxes': [[x1, y1, x2, y2], ...],
|
| 126 |
+
'labels': ['label1', 'label2', ...]} }
|
| 127 |
+
```python
|
| 128 |
+
prompt = "<DENSE_REGION_CAPTION>"
|
| 129 |
+
run_example(prompt)
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
### Region proposal
|
| 133 |
+
Dense region caption results format:
|
| 134 |
+
{'\<REGION_PROPOSAL>': {'bboxes': [[x1, y1, x2, y2], ...],
|
| 135 |
+
'labels': ['', '', ...]}}
|
| 136 |
+
```python
|
| 137 |
+
prompt = "<REGION_PROPOSAL>"
|
| 138 |
+
run_example(prompt)
|
| 139 |
+
```
|
| 140 |
+
|
| 141 |
+
### OCR
|
| 142 |
+
|
| 143 |
+
```python
|
| 144 |
+
prompt = "<OCR>"
|
| 145 |
+
run_example(prompt)
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
### OCR with Region
|
| 149 |
+
OCR with region output format:
|
| 150 |
+
{'\<OCR_WITH_REGION>': {'quad_boxes': [[x1, y1, x2, y2, x3, y3, x4, y4], ...], 'labels': ['text1', ...]}}
|
| 151 |
+
```python
|
| 152 |
+
prompt = "<OCR_WITH_REGION>"
|
| 153 |
+
run_example(prompt)
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
</details>
|
| 158 |
+
|
| 159 |
+
# Benchmarks
|
| 160 |
+
|
| 161 |
+
## Florence-2 Zero-shot performance
|
| 162 |
+
|
| 163 |
+
The following table presents the zero-shot performance of generalist vision foundation models on image captioning and object detection evaluation tasks. These models have not been exposed to the training data of the evaluation tasks during their training phase.
|
| 164 |
+
|
| 165 |
+
| Method | #params | COCO Cap. test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | COCO Det. val2017 mAP |
|
| 166 |
+
|--------|---------|----------------------|------------------|--------------------|-----------------------|
|
| 167 |
+
| Flamingo | 80B | 84.3 | - | - | - |
|
| 168 |
+
| Florence-2-base| 0.23B | 133.0 | 118.7 | 70.1 | 34.7 |
|
| 169 |
+
| Florence-2-large| 0.77B | 135.6 | 120.8 | 72.8 | 37.5 |
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
The following table continues the comparison with performance on other vision-language evaluation tasks.
|
| 173 |
+
|
| 174 |
+
| Method | Flickr30k test R@1 | Refcoco val Accuracy | Refcoco test-A Accuracy | Refcoco test-B Accuracy | Refcoco+ val Accuracy | Refcoco+ test-A Accuracy | Refcoco+ test-B Accuracy | Refcocog val Accuracy | Refcocog test Accuracy | Refcoco RES val mIoU |
|
| 175 |
+
|--------|----------------------|----------------------|-------------------------|-------------------------|-----------------------|--------------------------|--------------------------|-----------------------|------------------------|----------------------|
|
| 176 |
+
| Kosmos-2 | 78.7 | 52.3 | 57.4 | 47.3 | 45.5 | 50.7 | 42.2 | 60.6 | 61.7 | - |
|
| 177 |
+
| Florence-2-base | 83.6 | 53.9 | 58.4 | 49.7 | 51.5 | 56.4 | 47.9 | 66.3 | 65.1 | 34.6 |
|
| 178 |
+
| Florence-2-large | 84.4 | 56.3 | 61.6 | 51.4 | 53.6 | 57.9 | 49.9 | 68.0 | 67.0 | 35.8 |
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
## Florence-2 finetuned performance
|
| 183 |
+
|
| 184 |
+
We finetune Florence-2 models with a collection of downstream tasks, resulting two generalist models *Florence-2-base-ft* and *Florence-2-large-ft* that can conduct a wide range of downstream tasks.
|
| 185 |
+
|
| 186 |
+
The table below compares the performance of specialist and generalist models on various captioning and Visual Question Answering (VQA) tasks. Specialist models are fine-tuned specifically for each task, whereas generalist models are fine-tuned in a task-agnostic manner across all tasks. The symbol "▲" indicates the usage of external OCR as input.
|
| 187 |
+
|
| 188 |
+
| Method | # Params | COCO Caption Karpathy test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | VQAv2 test-dev Acc | TextVQA test-dev Acc | VizWiz VQA test-dev Acc |
|
| 189 |
+
|----------------|----------|-----------------------------------|------------------|--------------------|--------------------|----------------------|-------------------------|
|
| 190 |
+
| **Specialist Models** | | | | | | | |
|
| 191 |
+
| CoCa | 2.1B | 143.6 | 122.4 | - | 82.3 | - | - |
|
| 192 |
+
| BLIP-2 | 7.8B | 144.5 | 121.6 | - | 82.2 | - | - |
|
| 193 |
+
| GIT2 | 5.1B | 145.0 | 126.9 | 148.6 | 81.7 | 67.3 | 71.0 |
|
| 194 |
+
| Flamingo | 80B | 138.1 | - | - | 82.0 | 54.1 | 65.7 |
|
| 195 |
+
| PaLI | 17B | 149.1 | 127.0 | 160.0▲ | 84.3 | 58.8 / 73.1▲ | 71.6 / 74.4▲ |
|
| 196 |
+
| PaLI-X | 55B | 149.2 | 126.3 | 147.0 / 163.7▲ | 86.0 | 71.4 / 80.8▲ | 70.9 / 74.6▲ |
|
| 197 |
+
| **Generalist Models** | | | | | | | |
|
| 198 |
+
| Unified-IO | 2.9B | - | 100.0 | - | 77.9 | - | 57.4 |
|
| 199 |
+
| Florence-2-base-ft | 0.23B | 140.0 | 116.7 | 143.9 | 79.7 | 63.6 | 63.6 |
|
| 200 |
+
| Florence-2-large-ft | 0.77B | 143.3 | 124.9 | 151.1 | 81.7 | 73.5 | 72.6 |
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
| Method | # Params | COCO Det. val2017 mAP | Flickr30k test R@1 | RefCOCO val Accuracy | RefCOCO test-A Accuracy | RefCOCO test-B Accuracy | RefCOCO+ val Accuracy | RefCOCO+ test-A Accuracy | RefCOCO+ test-B Accuracy | RefCOCOg val Accuracy | RefCOCOg test Accuracy | RefCOCO RES val mIoU |
|
| 204 |
+
|----------------------|----------|-----------------------|--------------------|----------------------|-------------------------|-------------------------|------------------------|---------------------------|---------------------------|------------------------|-----------------------|------------------------|
|
| 205 |
+
| **Specialist Models** | | | | | | | | | | | | |
|
| 206 |
+
| SeqTR | - | - | - | 83.7 | 86.5 | 81.2 | 71.5 | 76.3 | 64.9 | 74.9 | 74.2 | - |
|
| 207 |
+
| PolyFormer | - | - | - | 90.4 | 92.9 | 87.2 | 85.0 | 89.8 | 78.0 | 85.8 | 85.9 | 76.9 |
|
| 208 |
+
| UNINEXT | 0.74B | 60.6 | - | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 | - |
|
| 209 |
+
| Ferret | 13B | - | - | 89.5 | 92.4 | 84.4 | 82.8 | 88.1 | 75.2 | 85.8 | 86.3 | - |
|
| 210 |
+
| **Generalist Models** | | | | | | | | | | | | |
|
| 211 |
+
| UniTAB | - | - | - | 88.6 | 91.1 | 83.8 | 81.0 | 85.4 | 71.6 | 84.6 | 84.7 | - |
|
| 212 |
+
| Florence-2-base-ft | 0.23B | 41.4 | 84.0 | 92.6 | 94.8 | 91.5 | 86.8 | 91.7 | 82.2 | 89.8 | 82.2 | 78.0 |
|
| 213 |
+
| Florence-2-large-ft| 0.77B | 43.4 | 85.2 | 93.4 | 95.3 | 92.0 | 88.3 | 92.9 | 83.6 | 91.2 | 91.7 | 80.5 |
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
## BibTex and citation info
|
| 217 |
+
|
| 218 |
+
```
|
| 219 |
+
@article{xiao2023florence,
|
| 220 |
+
title={Florence-2: Advancing a unified representation for a variety of vision tasks},
|
| 221 |
+
author={Xiao, Bin and Wu, Haiping and Xu, Weijian and Dai, Xiyang and Hu, Houdong and Lu, Yumao and Zeng, Michael and Liu, Ce and Yuan, Lu},
|
| 222 |
+
journal={arXiv preprint arXiv:2311.06242},
|
| 223 |
+
year={2023}
|
| 224 |
+
}
|
| 225 |
+
```
|