fuyingw commited on
Commit
2518c74
·
verified ·
1 Parent(s): 3ca5b53

Remove unnecessary code

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MELPEncoderModel"
4
+ ],
5
+ "attn_pooler_heads": 8,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_MELP_Encoder.MELPEncoderConfig",
8
+ "AutoModel": "modeling_MELP_Encoder.MELPEncoderModel"
9
+ },
10
+ "drop": 0.0,
11
+ "embed_dim_caption": 768,
12
+ "model_size": "small",
13
+ "model_type": "melp",
14
+ "n_queries_caption": 128,
15
+ "n_queries_contrast": 14,
16
+ "num_leads": 12,
17
+ "proj": "linear",
18
+ "proj_bias": false,
19
+ "shared_emb_dim": 256,
20
+ "torch_dtype": "bfloat16",
21
+ "transformers_version": "4.48.2",
22
+ "use_attentional_pool_caption": true,
23
+ "use_attentional_pool_contrast": true
24
+ }
configuration_MELP_Encoder.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class MELPEncoderConfig(PretrainedConfig):
5
+ model_type = "melp"
6
+
7
+ def __init__(
8
+ self,
9
+ model_size: str = "small", # small by default
10
+ shared_emb_dim: int = 256,
11
+ embed_dim_caption: int = 768,
12
+ use_attentional_pool_contrast: bool = True,
13
+ use_attentional_pool_caption: bool = True,
14
+ n_queries_contrast: int = 14,
15
+ n_queries_caption: int = 128,
16
+ attn_pooler_heads: int = 8,
17
+ proj: str = "linear",
18
+ drop: float = 0.,
19
+ proj_bias: bool = False,
20
+ num_leads: int = 12,
21
+ **kwargs
22
+ ):
23
+ self.model_size = model_size
24
+ self.shared_emb_dim = shared_emb_dim
25
+ self.embed_dim_caption = embed_dim_caption
26
+ self.use_attentional_pool_contrast = use_attentional_pool_contrast
27
+ self.use_attentional_pool_caption = use_attentional_pool_caption
28
+ self.n_queries_contrast = n_queries_contrast
29
+ self.n_queries_caption = n_queries_caption
30
+ self.attn_pooler_heads = attn_pooler_heads
31
+ self.proj = proj
32
+ self.drop = drop
33
+ self.proj_bias = proj_bias
34
+ self.num_leads = num_leads
35
+ super().__init__(**kwargs)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebd02d76e12c9740c32d596f3341fc04f4b6277d2bb7483302b47533dd00f10f
3
+ size 131213666
modeling_MELP_Encoder.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from collections import OrderedDict
6
+ from typing import Callable
7
+ from timm.models.layers import Mlp
8
+ from fairseq_signals_backbone.models.wav2vec2.wav2vec2_cmsc import Wav2Vec2CMSCModel, Wav2Vec2CMSCConfig
9
+ from lightning import LightningModule
10
+ from transformers import PreTrainedModel
11
+ from .configuration_MELP_Encoder import MELPEncoderConfig
12
+
13
+
14
+ class LayerNorm(nn.LayerNorm):
15
+ """Subclass torch's LayerNorm (with cast back to input dtype)."""
16
+
17
+ def forward(self, x: torch.Tensor):
18
+ orig_type = x.dtype
19
+ x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
20
+ return x.to(orig_type)
21
+
22
+
23
+ class AttentionalPooler(nn.Module):
24
+ def __init__(
25
+ self,
26
+ d_model: int,
27
+ context_dim: int,
28
+ n_head: int = 8,
29
+ n_queries: int = 256,
30
+ norm_layer: Callable = LayerNorm,
31
+ ):
32
+ super().__init__()
33
+ self.query = nn.Parameter(torch.randn(n_queries, d_model))
34
+ self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim, batch_first=True)
35
+ self.ln_q = norm_layer(d_model)
36
+ self.ln_k = norm_layer(context_dim)
37
+
38
+ def forward(self, x: torch.Tensor):
39
+ N = x.shape[0]
40
+ x = self.ln_k(x)
41
+ q = self.ln_q(self.query)
42
+ out = self.attn(q.unsqueeze(0).expand(N, -1, -1), x, x, need_weights=False)[0]
43
+ return out
44
+
45
+
46
+ def off_diagonal(x):
47
+ # return a flattened view of the off-diagonal elements of a square matrix
48
+ n, m = x.shape
49
+ assert n == m
50
+ return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
51
+
52
+
53
+ class ECGFMModel(LightningModule):
54
+ def __init__(self,
55
+ model_size: str = "small", # small by default
56
+ shared_emb_dim: int = 256,
57
+ embed_dim_caption: int = 768,
58
+ use_attentional_pool_contrast: bool = False,
59
+ use_attentional_pool_caption: bool = False,
60
+ n_queries_contrast: int = 10,
61
+ n_queries_caption: int = 128,
62
+ attn_pooler_heads: int = 8,
63
+ norm_layer: nn.Module = nn.LayerNorm,
64
+ proj: str = "linear",
65
+ drop: float = 0.,
66
+ proj_bias: bool = False,
67
+ num_leads: int = 12,
68
+ softmax_temperature: float = 0.1,
69
+ lambd: float = 0.0051,
70
+ *args,
71
+ **kwargs):
72
+
73
+ """" Implementation of ECG-FM model.
74
+ Using the Wave2Vec2 model as the ECG encoder: CNN + Transformer
75
+
76
+ """
77
+ super().__init__()
78
+ self.save_hyperparameters()
79
+ self.shared_emb_dim = shared_emb_dim
80
+ self.num_leads = num_leads
81
+ self.temperature = softmax_temperature
82
+
83
+ if model_size == "small":
84
+ self.encoder_embed_dim = 768
85
+ self.encoder_attention_heads = 12
86
+ self.encoder_layers = 8
87
+ self.encoder_ffn_embed_dim = 3072
88
+ elif model_size == "base":
89
+ self.encoder_embed_dim = 768
90
+ self.encoder_attention_heads = 12
91
+ self.encoder_layers = 12
92
+ self.encoder_ffn_embed_dim = 3072
93
+ elif model_size == "large":
94
+ self.encoder_embed_dim = 1024
95
+ self.encoder_attention_heads = 16
96
+ self.encoder_layers = 24
97
+ self.encoder_ffn_embed_dim = 4096
98
+ else:
99
+ raise ValueError(f"Unknown model size: {model_size}")
100
+ print("Using ECG encoder with the following configuration:")
101
+ print(f"encoder_embed_dim: {self.encoder_embed_dim}")
102
+ print(f"encoder_attention_heads: {self.encoder_attention_heads}")
103
+ print(f"encoder_layers: {self.encoder_layers}")
104
+ print(f"encoder_ffn_embed_dim: {self.encoder_ffn_embed_dim}")
105
+
106
+ self.init_ecg_encoder()
107
+
108
+ self.embed_dim_caption = embed_dim_caption
109
+ self.use_attentional_pool_contrast = use_attentional_pool_contrast
110
+ self.use_attentional_pool_caption = use_attentional_pool_caption
111
+
112
+ head_layers = OrderedDict()
113
+ prev_chs = self.ecg_encoder.cfg.encoder_embed_dim
114
+ if use_attentional_pool_contrast:
115
+ scale = prev_chs ** -0.5
116
+ self.attn_pool_contrast = AttentionalPooler(
117
+ d_model=shared_emb_dim,
118
+ context_dim=prev_chs,
119
+ n_head=attn_pooler_heads,
120
+ n_queries=n_queries_contrast)
121
+ self.ln_contrast = norm_layer(shared_emb_dim)
122
+ self.proj_contrast = nn.Parameter(scale * torch.randn(shared_emb_dim, shared_emb_dim))
123
+ else:
124
+ assert proj, 'projection layer needed if not using attentional pooling.'
125
+ # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
126
+ if proj == 'linear':
127
+ head_layers['drop'] = nn.Dropout(drop)
128
+ head_layers['proj'] = nn.Linear(prev_chs, shared_emb_dim, bias=proj_bias)
129
+ elif proj == 'mlp':
130
+ head_layers['mlp'] = Mlp(prev_chs, 2 * shared_emb_dim, shared_emb_dim, drop=(drop, 0), bias=(True, proj_bias))
131
+
132
+ self.head = nn.Sequential(head_layers)
133
+
134
+ if use_attentional_pool_caption:
135
+ self.attn_pool_caption = AttentionalPooler(
136
+ d_model=embed_dim_caption, context_dim=prev_chs, n_head=attn_pooler_heads, n_queries=n_queries_caption)
137
+ self.ln_caption = norm_layer(embed_dim_caption)
138
+
139
+ self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
140
+
141
+ self.bn = nn.BatchNorm1d(768, affine=False)
142
+ self.lambd = lambd
143
+
144
+ def init_ecg_encoder(self):
145
+ # Here we define Wav2Vec2CMSC model as the ECG encoder
146
+ cfg = Wav2Vec2CMSCConfig(
147
+ apply_mask = True,
148
+ mask_prob = 0.65,
149
+ quantize_targets = True,
150
+ final_dim = 256,
151
+ dropout_input = 0.1,
152
+ dropout_features = 0.1,
153
+ feature_grad_mult = 0.1,
154
+ encoder_embed_dim = self.encoder_embed_dim,
155
+ encoder_attention_heads = self.encoder_attention_heads,
156
+ in_d = 12,
157
+ encoder_layers = self.encoder_layers,
158
+ encoder_ffn_embed_dim = self.encoder_ffn_embed_dim
159
+ )
160
+ self.ecg_encoder = Wav2Vec2CMSCModel(cfg)
161
+
162
+ def _global_pool(self, x):
163
+ return torch.mean(x, dim=1)
164
+
165
+ @torch.no_grad()
166
+ # only used for finetune ...
167
+ def ext_ecg_emb(self, ecg, normalize=False):
168
+ assert ecg.dim() == 3, "Input tensor must be 3D"
169
+
170
+ ecg_out = self.ecg_encoder(source=ecg, mask=False, features_only=True)
171
+ features = ecg_out["x"]
172
+
173
+ if self.use_attentional_pool_contrast:
174
+ pooled = self.attn_pool_contrast(features)
175
+ pooled = self.ln_contrast(pooled)
176
+ pooled = torch.mean(pooled, dim=1)
177
+ else:
178
+ pooled = self._global_pool(features)
179
+
180
+ if normalize:
181
+ pooled = F.normalize(pooled, p=2, dim=-1)
182
+
183
+ return pooled
184
+
185
+ def _encode_ecg(self, ecg):
186
+ assert ecg.dim() == 3, "Input tensor must be 3D"
187
+ ecg_out = self.ecg_encoder(source=ecg, mask=False, features_only=True)
188
+ # features = self.ecg_encoder.get_features(net_output=ecg_out, aggregate=False)
189
+ # results after CNN-Transformer
190
+ features = ecg_out["x"]
191
+
192
+ if self.use_attentional_pool_contrast:
193
+ # hierarchical pooling
194
+ pooled = self.attn_pool_contrast(features)
195
+ pooled = self.ln_contrast(pooled)
196
+ pooled = pooled @ self.proj_contrast.unsqueeze(0)
197
+ pooled_beat = pooled.clone()
198
+ pooled = torch.mean(pooled, dim=1)
199
+ else:
200
+ pooled = self._global_pool(features)
201
+ pooled = self.head(features)
202
+
203
+ tokens = None
204
+ if self.use_attentional_pool_caption:
205
+ tokens = self.attn_pool_caption(features)
206
+ tokens = self.ln_caption(tokens)
207
+ else:
208
+ tokens = None
209
+
210
+ return pooled, pooled_beat, tokens
211
+
212
+ def encode_ecg(self, ecg):
213
+ ecg_latent, _, _ = self._encode_ecg(ecg)
214
+ return ecg_latent
215
+
216
+
217
+ class MELPEncoderModel(PreTrainedModel):
218
+ config_class = MELPEncoderConfig
219
+
220
+ def __init__(self, config: MELPEncoderConfig):
221
+ super().__init__(config)
222
+
223
+ self.ecg_encoder = ECGFMModel(
224
+ model_size=config.model_size,
225
+ shared_emb_dim=config.shared_emb_dim,
226
+ embed_dim_caption=config.embed_dim_caption,
227
+ use_attentional_pool_contrast=config.use_attentional_pool_contrast,
228
+ use_attentional_pool_caption=config.use_attentional_pool_caption,
229
+ n_queries_contrast=config.n_queries_contrast,
230
+ n_queries_caption=config.n_queries_caption,
231
+ attn_pooler_heads=config.attn_pooler_heads,
232
+ proj=config.proj,
233
+ drop=config.drop,
234
+ proj_bias=config.proj_bias,
235
+ num_leads=config.num_leads,
236
+ )
237
+
238
+ def forward(self, tensor: torch.Tensor) -> torch.Tensor:
239
+ proj_ecg_emb, ecg_beat_emb, ecg_token_emb = self.ecg_encoder._encode_ecg(tensor)
240
+
241
+ return {
242
+ "proj_ecg_emb": proj_ecg_emb,
243
+ "ecg_beat_emb": ecg_beat_emb,
244
+ "ecg_token_emb": ecg_token_emb
245
+ }