Felix Marty
commited on
Commit
·
309fcfc
1
Parent(s):
77501cd
remove unused
Browse files
modeling/__pycache__/modeling_resnet.cpython-39.pyc
DELETED
|
Binary file (16.1 kB)
|
|
|
modeling/modeling_resnet.py
DELETED
|
@@ -1,518 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2022 Microsoft Research, Inc. and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
""" PyTorch ResNet model."""
|
| 16 |
-
|
| 17 |
-
from typing import Optional
|
| 18 |
-
|
| 19 |
-
import torch
|
| 20 |
-
import torch.utils.checkpoint
|
| 21 |
-
from torch import Tensor, nn
|
| 22 |
-
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 23 |
-
|
| 24 |
-
from transformers.activations import ACT2FN
|
| 25 |
-
from transformers.modeling_outputs import (
|
| 26 |
-
BackboneOutput,
|
| 27 |
-
BaseModelOutputWithNoAttention,
|
| 28 |
-
BaseModelOutputWithPoolingAndNoAttention,
|
| 29 |
-
ImageClassifierOutputWithNoAttention,
|
| 30 |
-
)
|
| 31 |
-
from transformers.modeling_utils import BackboneMixin, PreTrainedModel
|
| 32 |
-
from transformers.utils import (
|
| 33 |
-
add_code_sample_docstrings,
|
| 34 |
-
add_start_docstrings,
|
| 35 |
-
add_start_docstrings_to_model_forward,
|
| 36 |
-
logging,
|
| 37 |
-
replace_return_docstrings,
|
| 38 |
-
)
|
| 39 |
-
from transformers import ResNetConfig
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
logger = logging.get_logger(__name__)
|
| 43 |
-
|
| 44 |
-
# General docstring
|
| 45 |
-
_CONFIG_FOR_DOC = "ResNetConfig"
|
| 46 |
-
_FEAT_EXTRACTOR_FOR_DOC = "AutoImageProcessor"
|
| 47 |
-
|
| 48 |
-
# Base docstring
|
| 49 |
-
_CHECKPOINT_FOR_DOC = "microsoft/resnet-50"
|
| 50 |
-
_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7]
|
| 51 |
-
|
| 52 |
-
# Image classification docstring
|
| 53 |
-
_IMAGE_CLASS_CHECKPOINT = "microsoft/resnet-50"
|
| 54 |
-
_IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat"
|
| 55 |
-
|
| 56 |
-
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 57 |
-
"microsoft/resnet-50",
|
| 58 |
-
# See all resnet models at https://huggingface.co/models?filter=resnet
|
| 59 |
-
]
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
class ResNetConvLayer(nn.Module):
|
| 63 |
-
def __init__(
|
| 64 |
-
self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, activation: str = "relu"
|
| 65 |
-
):
|
| 66 |
-
super().__init__()
|
| 67 |
-
self.convolution = nn.Conv2d(
|
| 68 |
-
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, bias=False
|
| 69 |
-
)
|
| 70 |
-
self.normalization = nn.BatchNorm2d(out_channels)
|
| 71 |
-
self.activation = ACT2FN[activation] if activation is not None else nn.Identity()
|
| 72 |
-
|
| 73 |
-
def forward(self, input: Tensor) -> Tensor:
|
| 74 |
-
hidden_state = self.convolution(input)
|
| 75 |
-
hidden_state = self.normalization(hidden_state)
|
| 76 |
-
hidden_state = self.activation(hidden_state)
|
| 77 |
-
return hidden_state
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
class ResNetEmbeddings(nn.Module):
|
| 81 |
-
"""
|
| 82 |
-
ResNet Embeddings (stem) composed of a single aggressive convolution.
|
| 83 |
-
"""
|
| 84 |
-
|
| 85 |
-
def __init__(self, config: ResNetConfig):
|
| 86 |
-
super().__init__()
|
| 87 |
-
self.embedder = ResNetConvLayer(
|
| 88 |
-
config.num_channels, config.embedding_size, kernel_size=7, stride=2, activation=config.hidden_act
|
| 89 |
-
)
|
| 90 |
-
self.pooler = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 91 |
-
self.num_channels = config.num_channels
|
| 92 |
-
|
| 93 |
-
def forward(self, pixel_values: Tensor) -> Tensor:
|
| 94 |
-
num_channels = pixel_values.shape[1]
|
| 95 |
-
if num_channels != self.num_channels:
|
| 96 |
-
raise ValueError(
|
| 97 |
-
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
| 98 |
-
)
|
| 99 |
-
embedding = self.embedder(pixel_values)
|
| 100 |
-
embedding = self.pooler(embedding)
|
| 101 |
-
return embedding
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
class ResNetShortCut(nn.Module):
|
| 105 |
-
"""
|
| 106 |
-
ResNet shortcut, used to project the residual features to the correct size. If needed, it is also used to
|
| 107 |
-
downsample the input using `stride=2`.
|
| 108 |
-
"""
|
| 109 |
-
|
| 110 |
-
def __init__(self, in_channels: int, out_channels: int, stride: int = 2):
|
| 111 |
-
super().__init__()
|
| 112 |
-
self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
|
| 113 |
-
self.normalization = nn.BatchNorm2d(out_channels)
|
| 114 |
-
|
| 115 |
-
def forward(self, input: Tensor) -> Tensor:
|
| 116 |
-
hidden_state = self.convolution(input)
|
| 117 |
-
hidden_state = self.normalization(hidden_state)
|
| 118 |
-
return hidden_state
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
class ResNetBasicLayer(nn.Module):
|
| 122 |
-
"""
|
| 123 |
-
A classic ResNet's residual layer composed by two `3x3` convolutions.
|
| 124 |
-
"""
|
| 125 |
-
|
| 126 |
-
def __init__(self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu"):
|
| 127 |
-
super().__init__()
|
| 128 |
-
should_apply_shortcut = in_channels != out_channels or stride != 1
|
| 129 |
-
self.shortcut = (
|
| 130 |
-
ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity()
|
| 131 |
-
)
|
| 132 |
-
self.layer = nn.Sequential(
|
| 133 |
-
ResNetConvLayer(in_channels, out_channels, stride=stride),
|
| 134 |
-
ResNetConvLayer(out_channels, out_channels, activation=None),
|
| 135 |
-
)
|
| 136 |
-
self.activation = ACT2FN[activation]
|
| 137 |
-
|
| 138 |
-
def forward(self, hidden_state):
|
| 139 |
-
residual = hidden_state
|
| 140 |
-
hidden_state = self.layer(hidden_state)
|
| 141 |
-
residual = self.shortcut(residual)
|
| 142 |
-
hidden_state += residual
|
| 143 |
-
hidden_state = self.activation(hidden_state)
|
| 144 |
-
return hidden_state
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
class ResNetBottleNeckLayer(nn.Module):
|
| 148 |
-
"""
|
| 149 |
-
A classic ResNet's bottleneck layer composed by three `3x3` convolutions.
|
| 150 |
-
|
| 151 |
-
The first `1x1` convolution reduces the input by a factor of `reduction` in order to make the second `3x3`
|
| 152 |
-
convolution faster. The last `1x1` convolution remaps the reduced features to `out_channels`.
|
| 153 |
-
"""
|
| 154 |
-
|
| 155 |
-
def __init__(
|
| 156 |
-
self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu", reduction: int = 4
|
| 157 |
-
):
|
| 158 |
-
super().__init__()
|
| 159 |
-
should_apply_shortcut = in_channels != out_channels or stride != 1
|
| 160 |
-
reduces_channels = out_channels // reduction
|
| 161 |
-
self.shortcut = (
|
| 162 |
-
ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity()
|
| 163 |
-
)
|
| 164 |
-
self.layer = nn.Sequential(
|
| 165 |
-
ResNetConvLayer(in_channels, reduces_channels, kernel_size=1),
|
| 166 |
-
ResNetConvLayer(reduces_channels, reduces_channels, stride=stride),
|
| 167 |
-
ResNetConvLayer(reduces_channels, out_channels, kernel_size=1, activation=None),
|
| 168 |
-
)
|
| 169 |
-
self.activation = ACT2FN[activation]
|
| 170 |
-
|
| 171 |
-
def forward(self, hidden_state):
|
| 172 |
-
residual = hidden_state
|
| 173 |
-
hidden_state = self.layer(hidden_state)
|
| 174 |
-
residual = self.shortcut(residual)
|
| 175 |
-
hidden_state += residual
|
| 176 |
-
hidden_state = self.activation(hidden_state)
|
| 177 |
-
return hidden_state
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
class ResNetStage(nn.Module):
|
| 181 |
-
"""
|
| 182 |
-
A ResNet stage composed by stacked layers.
|
| 183 |
-
"""
|
| 184 |
-
|
| 185 |
-
def __init__(
|
| 186 |
-
self,
|
| 187 |
-
config: ResNetConfig,
|
| 188 |
-
in_channels: int,
|
| 189 |
-
out_channels: int,
|
| 190 |
-
stride: int = 2,
|
| 191 |
-
depth: int = 2,
|
| 192 |
-
):
|
| 193 |
-
super().__init__()
|
| 194 |
-
|
| 195 |
-
layer = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer
|
| 196 |
-
|
| 197 |
-
self.layers = nn.Sequential(
|
| 198 |
-
# downsampling is done in the first layer with stride of 2
|
| 199 |
-
layer(in_channels, out_channels, stride=stride, activation=config.hidden_act),
|
| 200 |
-
*[layer(out_channels, out_channels, activation=config.hidden_act) for _ in range(depth - 1)],
|
| 201 |
-
)
|
| 202 |
-
|
| 203 |
-
def forward(self, input: Tensor) -> Tensor:
|
| 204 |
-
hidden_state = input
|
| 205 |
-
for layer in self.layers:
|
| 206 |
-
hidden_state = layer(hidden_state)
|
| 207 |
-
hidden_state = hidden_state + 1
|
| 208 |
-
print("having fun in my custom code")
|
| 209 |
-
return hidden_state
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
class ResNetEncoder(nn.Module):
|
| 213 |
-
def __init__(self, config: ResNetConfig):
|
| 214 |
-
super().__init__()
|
| 215 |
-
self.stages = nn.ModuleList([])
|
| 216 |
-
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
|
| 217 |
-
self.stages.append(
|
| 218 |
-
ResNetStage(
|
| 219 |
-
config,
|
| 220 |
-
config.embedding_size,
|
| 221 |
-
config.hidden_sizes[0],
|
| 222 |
-
stride=2 if config.downsample_in_first_stage else 1,
|
| 223 |
-
depth=config.depths[0],
|
| 224 |
-
)
|
| 225 |
-
)
|
| 226 |
-
in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:])
|
| 227 |
-
for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]):
|
| 228 |
-
self.stages.append(ResNetStage(config, in_channels, out_channels, depth=depth))
|
| 229 |
-
|
| 230 |
-
def forward(
|
| 231 |
-
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True
|
| 232 |
-
) -> BaseModelOutputWithNoAttention:
|
| 233 |
-
hidden_states = () if output_hidden_states else None
|
| 234 |
-
|
| 235 |
-
for stage_module in self.stages:
|
| 236 |
-
if output_hidden_states:
|
| 237 |
-
hidden_states = hidden_states + (hidden_state,)
|
| 238 |
-
|
| 239 |
-
hidden_state = stage_module(hidden_state)
|
| 240 |
-
|
| 241 |
-
if output_hidden_states:
|
| 242 |
-
hidden_states = hidden_states + (hidden_state,)
|
| 243 |
-
|
| 244 |
-
if not return_dict:
|
| 245 |
-
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
|
| 246 |
-
|
| 247 |
-
return BaseModelOutputWithNoAttention(
|
| 248 |
-
last_hidden_state=hidden_state,
|
| 249 |
-
hidden_states=hidden_states,
|
| 250 |
-
)
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
class ResNetPreTrainedModel(PreTrainedModel):
|
| 254 |
-
"""
|
| 255 |
-
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 256 |
-
models.
|
| 257 |
-
"""
|
| 258 |
-
|
| 259 |
-
config_class = ResNetConfig
|
| 260 |
-
base_model_prefix = "resnet"
|
| 261 |
-
main_input_name = "pixel_values"
|
| 262 |
-
supports_gradient_checkpointing = True
|
| 263 |
-
|
| 264 |
-
def _init_weights(self, module):
|
| 265 |
-
if isinstance(module, nn.Conv2d):
|
| 266 |
-
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
|
| 267 |
-
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
|
| 268 |
-
nn.init.constant_(module.weight, 1)
|
| 269 |
-
nn.init.constant_(module.bias, 0)
|
| 270 |
-
|
| 271 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
| 272 |
-
if isinstance(module, ResNetEncoder):
|
| 273 |
-
module.gradient_checkpointing = value
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
RESNET_START_DOCSTRING = r"""
|
| 277 |
-
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
| 278 |
-
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
| 279 |
-
behavior.
|
| 280 |
-
|
| 281 |
-
Parameters:
|
| 282 |
-
config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.
|
| 283 |
-
Initializing with a config file does not load the weights associated with the model, only the
|
| 284 |
-
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 285 |
-
"""
|
| 286 |
-
|
| 287 |
-
RESNET_INPUTS_DOCSTRING = r"""
|
| 288 |
-
Args:
|
| 289 |
-
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 290 |
-
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
| 291 |
-
[`AutoImageProcessor.__call__`] for details.
|
| 292 |
-
|
| 293 |
-
output_hidden_states (`bool`, *optional*):
|
| 294 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 295 |
-
more detail.
|
| 296 |
-
return_dict (`bool`, *optional*):
|
| 297 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 298 |
-
"""
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
@add_start_docstrings(
|
| 302 |
-
"The bare ResNet model outputting raw features without any specific head on top.",
|
| 303 |
-
RESNET_START_DOCSTRING,
|
| 304 |
-
)
|
| 305 |
-
class ResNetModel(ResNetPreTrainedModel):
|
| 306 |
-
def __init__(self, config):
|
| 307 |
-
super().__init__(config)
|
| 308 |
-
self.config = config
|
| 309 |
-
self.embedder = ResNetEmbeddings(config)
|
| 310 |
-
self.encoder = ResNetEncoder(config)
|
| 311 |
-
self.pooler = nn.AdaptiveAvgPool2d((1, 1))
|
| 312 |
-
# Initialize weights and apply final processing
|
| 313 |
-
self.post_init()
|
| 314 |
-
|
| 315 |
-
@add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
|
| 316 |
-
@add_code_sample_docstrings(
|
| 317 |
-
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
|
| 318 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 319 |
-
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
| 320 |
-
config_class=_CONFIG_FOR_DOC,
|
| 321 |
-
modality="vision",
|
| 322 |
-
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
| 323 |
-
)
|
| 324 |
-
def forward(
|
| 325 |
-
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
|
| 326 |
-
) -> BaseModelOutputWithPoolingAndNoAttention:
|
| 327 |
-
output_hidden_states = (
|
| 328 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 329 |
-
)
|
| 330 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 331 |
-
|
| 332 |
-
embedding_output = self.embedder(pixel_values)
|
| 333 |
-
|
| 334 |
-
encoder_outputs = self.encoder(
|
| 335 |
-
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
last_hidden_state = encoder_outputs[0]
|
| 339 |
-
|
| 340 |
-
pooled_output = self.pooler(last_hidden_state)
|
| 341 |
-
|
| 342 |
-
if not return_dict:
|
| 343 |
-
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 344 |
-
|
| 345 |
-
return BaseModelOutputWithPoolingAndNoAttention(
|
| 346 |
-
last_hidden_state=last_hidden_state,
|
| 347 |
-
pooler_output=pooled_output,
|
| 348 |
-
hidden_states=encoder_outputs.hidden_states,
|
| 349 |
-
)
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
@add_start_docstrings(
|
| 353 |
-
"""
|
| 354 |
-
ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
| 355 |
-
ImageNet.
|
| 356 |
-
""",
|
| 357 |
-
RESNET_START_DOCSTRING,
|
| 358 |
-
)
|
| 359 |
-
class ResNetCustomForImageClassification(ResNetPreTrainedModel):
|
| 360 |
-
def __init__(self, config):
|
| 361 |
-
super().__init__(config)
|
| 362 |
-
self.num_labels = config.num_labels
|
| 363 |
-
self.resnet = ResNetModel(config)
|
| 364 |
-
# classification head
|
| 365 |
-
self.classifier = nn.Sequential(
|
| 366 |
-
nn.Flatten(),
|
| 367 |
-
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(),
|
| 368 |
-
)
|
| 369 |
-
# initialize weights and apply final processing
|
| 370 |
-
self.post_init()
|
| 371 |
-
|
| 372 |
-
@add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
|
| 373 |
-
@add_code_sample_docstrings(
|
| 374 |
-
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
|
| 375 |
-
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
| 376 |
-
output_type=ImageClassifierOutputWithNoAttention,
|
| 377 |
-
config_class=_CONFIG_FOR_DOC,
|
| 378 |
-
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
| 379 |
-
)
|
| 380 |
-
def forward(
|
| 381 |
-
self,
|
| 382 |
-
pixel_values: Optional[torch.FloatTensor] = None,
|
| 383 |
-
labels: Optional[torch.LongTensor] = None,
|
| 384 |
-
output_hidden_states: Optional[bool] = None,
|
| 385 |
-
return_dict: Optional[bool] = None,
|
| 386 |
-
) -> ImageClassifierOutputWithNoAttention:
|
| 387 |
-
r"""
|
| 388 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 389 |
-
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
| 390 |
-
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 391 |
-
"""
|
| 392 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 393 |
-
|
| 394 |
-
outputs = self.resnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
| 395 |
-
|
| 396 |
-
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
| 397 |
-
|
| 398 |
-
logits = self.classifier(pooled_output)
|
| 399 |
-
|
| 400 |
-
loss = None
|
| 401 |
-
|
| 402 |
-
if labels is not None:
|
| 403 |
-
if self.config.problem_type is None:
|
| 404 |
-
if self.num_labels == 1:
|
| 405 |
-
self.config.problem_type = "regression"
|
| 406 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 407 |
-
self.config.problem_type = "single_label_classification"
|
| 408 |
-
else:
|
| 409 |
-
self.config.problem_type = "multi_label_classification"
|
| 410 |
-
if self.config.problem_type == "regression":
|
| 411 |
-
loss_fct = MSELoss()
|
| 412 |
-
if self.num_labels == 1:
|
| 413 |
-
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 414 |
-
else:
|
| 415 |
-
loss = loss_fct(logits, labels)
|
| 416 |
-
elif self.config.problem_type == "single_label_classification":
|
| 417 |
-
loss_fct = CrossEntropyLoss()
|
| 418 |
-
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 419 |
-
elif self.config.problem_type == "multi_label_classification":
|
| 420 |
-
loss_fct = BCEWithLogitsLoss()
|
| 421 |
-
loss = loss_fct(logits, labels)
|
| 422 |
-
|
| 423 |
-
if not return_dict:
|
| 424 |
-
output = (logits,) + outputs[2:]
|
| 425 |
-
return (loss,) + output if loss is not None else output
|
| 426 |
-
|
| 427 |
-
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
@add_start_docstrings(
|
| 431 |
-
"""
|
| 432 |
-
ResNet backbone, to be used with frameworks like DETR and MaskFormer.
|
| 433 |
-
""",
|
| 434 |
-
RESNET_START_DOCSTRING,
|
| 435 |
-
)
|
| 436 |
-
class ResNetBackbone(ResNetPreTrainedModel, BackboneMixin):
|
| 437 |
-
def __init__(self, config):
|
| 438 |
-
super().__init__(config)
|
| 439 |
-
|
| 440 |
-
self.stage_names = config.stage_names
|
| 441 |
-
self.embedder = ResNetEmbeddings(config)
|
| 442 |
-
self.encoder = ResNetEncoder(config)
|
| 443 |
-
|
| 444 |
-
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
|
| 445 |
-
|
| 446 |
-
out_feature_channels = {}
|
| 447 |
-
out_feature_channels["stem"] = config.embedding_size
|
| 448 |
-
for idx, stage in enumerate(self.stage_names[1:]):
|
| 449 |
-
out_feature_channels[stage] = config.hidden_sizes[idx]
|
| 450 |
-
|
| 451 |
-
self.out_feature_channels = out_feature_channels
|
| 452 |
-
|
| 453 |
-
# initialize weights and apply final processing
|
| 454 |
-
self.post_init()
|
| 455 |
-
|
| 456 |
-
@property
|
| 457 |
-
def channels(self):
|
| 458 |
-
return [self.out_feature_channels[name] for name in self.out_features]
|
| 459 |
-
|
| 460 |
-
@add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
|
| 461 |
-
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
| 462 |
-
def forward(
|
| 463 |
-
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
|
| 464 |
-
) -> BackboneOutput:
|
| 465 |
-
"""
|
| 466 |
-
Returns:
|
| 467 |
-
|
| 468 |
-
Examples:
|
| 469 |
-
|
| 470 |
-
```python
|
| 471 |
-
>>> from transformers import AutoImageProcessor, AutoBackbone
|
| 472 |
-
>>> import torch
|
| 473 |
-
>>> from PIL import Image
|
| 474 |
-
>>> import requests
|
| 475 |
-
|
| 476 |
-
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 477 |
-
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 478 |
-
|
| 479 |
-
>>> processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
| 480 |
-
>>> model = AutoBackbone.from_pretrained(
|
| 481 |
-
... "microsoft/resnet-50", out_features=["stage1", "stage2", "stage3", "stage4"]
|
| 482 |
-
... )
|
| 483 |
-
|
| 484 |
-
>>> inputs = processor(image, return_tensors="pt")
|
| 485 |
-
|
| 486 |
-
>>> outputs = model(**inputs)
|
| 487 |
-
>>> feature_maps = outputs.feature_maps
|
| 488 |
-
>>> list(feature_maps[-1].shape)
|
| 489 |
-
[1, 2048, 7, 7]
|
| 490 |
-
```"""
|
| 491 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 492 |
-
output_hidden_states = (
|
| 493 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 494 |
-
)
|
| 495 |
-
|
| 496 |
-
embedding_output = self.embedder(pixel_values)
|
| 497 |
-
|
| 498 |
-
outputs = self.encoder(embedding_output, output_hidden_states=True, return_dict=True)
|
| 499 |
-
|
| 500 |
-
hidden_states = outputs.hidden_states
|
| 501 |
-
|
| 502 |
-
feature_maps = ()
|
| 503 |
-
for idx, stage in enumerate(self.stage_names):
|
| 504 |
-
if stage in self.out_features:
|
| 505 |
-
feature_maps += (hidden_states[idx],)
|
| 506 |
-
|
| 507 |
-
if not return_dict:
|
| 508 |
-
output = (feature_maps,)
|
| 509 |
-
if output_hidden_states:
|
| 510 |
-
output += (outputs.hidden_states,)
|
| 511 |
-
return output
|
| 512 |
-
|
| 513 |
-
return BackboneOutput(
|
| 514 |
-
feature_maps=feature_maps,
|
| 515 |
-
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
| 516 |
-
attentions=None,
|
| 517 |
-
)
|
| 518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|