Upload modelling_expertv2.py with huggingface_hub
Browse files- modelling_expertv2.py +913 -0
modelling_expertv2.py
ADDED
|
@@ -0,0 +1,913 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
import copy
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_intermediate_size(hidden_dim, ffn_dim_multiplier=4, multiple_of=256):
|
| 9 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 10 |
+
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
| 11 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
| 12 |
+
return hidden_dim
|
| 13 |
+
|
| 14 |
+
import torch.nn.functional as F # noqa: N812
|
| 15 |
+
import torch
|
| 16 |
+
from typing import Optional,Callable,Dict,Any
|
| 17 |
+
from torch import nn
|
| 18 |
+
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLAttention,apply_multimodal_rotary_pos_emb,eager_attention_forward,repeat_kv
|
| 19 |
+
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import Qwen2_5_VLTextConfig
|
| 20 |
+
from transformers import Qwen2_5_VLTextModel,Qwen2_5_VLForConditionalGeneration
|
| 21 |
+
from transformers.cache_utils import Cache
|
| 22 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
|
| 23 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 24 |
+
from transformers.processing_utils import Unpack
|
| 25 |
+
from transformers import AutoProcessor
|
| 26 |
+
from einops import rearrange, repeat
|
| 27 |
+
from qwen_vl_utils import process_vision_info
|
| 28 |
+
import PIL
|
| 29 |
+
import json
|
| 30 |
+
import math
|
| 31 |
+
import numpy as np
|
| 32 |
+
from huggingface_hub import hf_hub_download
|
| 33 |
+
|
| 34 |
+
def create_sinusoidal_pos_embedding(
|
| 35 |
+
time: torch.tensor, dimension: int, min_period: float, max_period: float, device="cpu"
|
| 36 |
+
):
|
| 37 |
+
"""Computes sine-cosine positional embedding vectors for scalar positions."""
|
| 38 |
+
if dimension % 2 != 0:
|
| 39 |
+
raise ValueError(f"dimension ({dimension}) must be divisible by 2")
|
| 40 |
+
|
| 41 |
+
if time.ndim != 1:
|
| 42 |
+
raise ValueError("The time tensor is expected to be of shape `(batch_size, )`.")
|
| 43 |
+
|
| 44 |
+
dtype = torch.float32
|
| 45 |
+
fraction = torch.linspace(0.0, 1.0, dimension // 2, dtype=dtype, device=device)
|
| 46 |
+
period = min_period * (max_period / min_period) ** fraction
|
| 47 |
+
|
| 48 |
+
# Compute the outer product
|
| 49 |
+
scaling_factor = 1.0 / period * 2 * math.pi
|
| 50 |
+
sin_input = scaling_factor[None, :] * time[:, None]
|
| 51 |
+
pos_emb = torch.cat([torch.sin(sin_input), torch.cos(sin_input)], dim=1)
|
| 52 |
+
return pos_emb
|
| 53 |
+
|
| 54 |
+
def apply_rope(x, positions, max_wavelength=10_000):
|
| 55 |
+
"""
|
| 56 |
+
Applies RoPE positions [B, L] to x [B, L, H, D].
|
| 57 |
+
"""
|
| 58 |
+
d_half = x.shape[-1] // 2
|
| 59 |
+
device = x.device
|
| 60 |
+
dtype = x.dtype
|
| 61 |
+
x = x.to(torch.float32)
|
| 62 |
+
|
| 63 |
+
freq_exponents = (2.0 / x.shape[-1]) * torch.arange(d_half, dtype=torch.float32, device=device)
|
| 64 |
+
timescale = max_wavelength**freq_exponents
|
| 65 |
+
radians = positions[..., None].to(torch.float32) / timescale[None, None, :].to(torch.float32)
|
| 66 |
+
|
| 67 |
+
radians = radians[..., None, :]
|
| 68 |
+
|
| 69 |
+
sin = torch.sin(radians) # .to(dtype=dtype)
|
| 70 |
+
cos = torch.cos(radians) # .to(dtype=dtype)
|
| 71 |
+
|
| 72 |
+
x1, x2 = x.split(d_half, dim=-1)
|
| 73 |
+
res = torch.empty_like(x)
|
| 74 |
+
res[..., :d_half] = x1 * cos - x2 * sin
|
| 75 |
+
res[..., d_half:] = x2 * cos + x1 * sin
|
| 76 |
+
|
| 77 |
+
return res.to(dtype)
|
| 78 |
+
|
| 79 |
+
def make_att_2d_masks(pad_masks, att_masks):
|
| 80 |
+
"""Copied from big_vision.
|
| 81 |
+
|
| 82 |
+
Tokens can attend to valid inputs tokens which have a cumulative mask_ar
|
| 83 |
+
smaller or equal to theirs. This way `mask_ar` int[B, N] can be used to
|
| 84 |
+
setup several types of attention, for example:
|
| 85 |
+
|
| 86 |
+
[[1 1 1 1 1 1]]: pure causal attention.
|
| 87 |
+
|
| 88 |
+
[[0 0 0 1 1 1]]: prefix-lm attention. The first 3 tokens can attend between
|
| 89 |
+
themselves and the last 3 tokens have a causal attention. The first
|
| 90 |
+
entry could also be a 1 without changing behaviour.
|
| 91 |
+
|
| 92 |
+
[[1 0 1 0 1 0 0 1 0 0]]: causal attention between 4 blocks. Tokens of a
|
| 93 |
+
block can attend all previous blocks and all tokens on the same block.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
input_mask: bool[B, N] true if its part of the input, false if padding.
|
| 97 |
+
mask_ar: int32[B, N] mask that's 1 where previous tokens cannot depend on
|
| 98 |
+
it and 0 where it shares the same attention mask as the previous token.
|
| 99 |
+
"""
|
| 100 |
+
if att_masks.ndim != 2:
|
| 101 |
+
raise ValueError(att_masks.ndim)
|
| 102 |
+
if pad_masks.ndim != 2:
|
| 103 |
+
raise ValueError(pad_masks.ndim)
|
| 104 |
+
|
| 105 |
+
cumsum = torch.cumsum(att_masks, dim=1)
|
| 106 |
+
att_2d_masks = cumsum[:, None, :] <= cumsum[:, :, None]
|
| 107 |
+
pad_2d_masks = pad_masks[:, None, :] * pad_masks[:, :, None]
|
| 108 |
+
att_2d_masks = att_2d_masks & pad_2d_masks
|
| 109 |
+
return att_2d_masks
|
| 110 |
+
|
| 111 |
+
class Qwen2_5_VLMoTAttention(Qwen2_5_VLAttention):
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
"""
|
| 115 |
+
|
| 116 |
+
def __init__(self, config: Qwen2_5_VLTextConfig, layer_idx: Optional[int] = None):
|
| 117 |
+
super().__init__(config,layer_idx)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def forward(
|
| 121 |
+
self,
|
| 122 |
+
hidden_states: torch.Tensor,
|
| 123 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 124 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 125 |
+
past_key_value: Optional[Cache] = None,
|
| 126 |
+
output_attentions: bool = False,
|
| 127 |
+
use_cache: bool = False,
|
| 128 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 129 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 130 |
+
fill_kv_cache=True,
|
| 131 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 132 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
| 133 |
+
|
| 134 |
+
bsz, q_len, _ = hidden_states.size()
|
| 135 |
+
|
| 136 |
+
query_states = self.q_proj(hidden_states)
|
| 137 |
+
key_states = self.k_proj(hidden_states)
|
| 138 |
+
value_states = self.v_proj(hidden_states)
|
| 139 |
+
|
| 140 |
+
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 141 |
+
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 142 |
+
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
#cos, sin = position_embeddings
|
| 146 |
+
|
| 147 |
+
## Since our action chunk is 1d time series, we do not need multimodal rope. Switch to normal rope instead
|
| 148 |
+
#query_states, key_states = apply_multimodal_rotary_pos_emb(
|
| 149 |
+
# query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
| 150 |
+
#)
|
| 151 |
+
query_states = rearrange(query_states, 'b h s d -> b s h d')
|
| 152 |
+
query_states = apply_rope(query_states,position_ids)
|
| 153 |
+
query_states = rearrange(query_states, 'b s h d -> b h s d')
|
| 154 |
+
|
| 155 |
+
key_states = rearrange(key_states, 'b h s d -> b s h d')
|
| 156 |
+
key_states = apply_rope(key_states,position_ids)
|
| 157 |
+
key_states = rearrange(key_states, 'b s h d -> b h s d')
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
if use_cache:
|
| 161 |
+
|
| 162 |
+
past_key_state = past_key_value[self.layer_idx][0]
|
| 163 |
+
past_value_state = past_key_value[self.layer_idx][1]
|
| 164 |
+
|
| 165 |
+
key_states = torch.cat([past_key_state, key_states], dim=2)
|
| 166 |
+
# print(key_states.dtype)
|
| 167 |
+
value_states = torch.cat(
|
| 168 |
+
[past_value_state, value_states], dim=2
|
| 169 |
+
)
|
| 170 |
+
key_states = key_states.to(dtype=query_states.dtype)
|
| 171 |
+
value_states = value_states.to(dtype=query_states.dtype)
|
| 172 |
+
#print("New K shape",key_states.shape)
|
| 173 |
+
#print("New V shape",value_states.shape)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
#if past_key_value is not None and not fill_kv_cache: ## Only update KV cache if fill_kv_cache is False
|
| 178 |
+
#cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 179 |
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 180 |
+
|
| 181 |
+
attention_interface: Callable = eager_attention_forward
|
| 182 |
+
if self.config._attn_implementation != "eager":
|
| 183 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 184 |
+
#print("New query shape",query_states.shape)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
#attention_mask = torch.ones()
|
| 188 |
+
## I need to check if is_casual is default to True here. Is casual will automatically create an attention mask and I do not want that to happen.
|
| 189 |
+
#print(position_ids)
|
| 190 |
+
#print(attention_mask.shape)
|
| 191 |
+
|
| 192 |
+
attn_output, attn_weights = attention_interface(
|
| 193 |
+
self,
|
| 194 |
+
query_states,
|
| 195 |
+
key_states,
|
| 196 |
+
value_states,
|
| 197 |
+
attention_mask,
|
| 198 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 199 |
+
scaling=self.scaling,
|
| 200 |
+
sliding_window=self.sliding_window,
|
| 201 |
+
position_ids=position_ids, # pass positions for FA2
|
| 202 |
+
**kwargs,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
| 206 |
+
attn_output = self.o_proj(attn_output)
|
| 207 |
+
return attn_output, attn_weights
|
| 208 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
| 209 |
+
class Qwen2_5_VLAExpert(Qwen2_5_VLTextModel):
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def __init__(self,config):
|
| 214 |
+
super().__init__(config)
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def forward(self,
|
| 219 |
+
expert_attention_mask: Optional[torch.Tensor] = None,
|
| 220 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 221 |
+
vlm_key_values: Optional[Cache] = None,
|
| 222 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 223 |
+
use_cache: Optional[bool] = None,
|
| 224 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 225 |
+
output_attentions: Optional[bool] = None,
|
| 226 |
+
output_hidden_states: Optional[bool] = None,
|
| 227 |
+
return_dict: Optional[bool] = None,
|
| 228 |
+
**kwargs: Unpack[FlashAttentionKwargs],):
|
| 229 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 230 |
+
output_hidden_states = (
|
| 231 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 232 |
+
)
|
| 233 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 234 |
+
|
| 235 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
if self.gradient_checkpointing and self.training:
|
| 239 |
+
if use_cache:
|
| 240 |
+
logger.warning_once(
|
| 241 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 242 |
+
)
|
| 243 |
+
use_cache = False
|
| 244 |
+
|
| 245 |
+
if inputs_embeds is None:
|
| 246 |
+
raise ValueError("You must specify exactly inputs_embeds")
|
| 247 |
+
# torch.jit.trace() doesn't support cache objects in the output
|
| 248 |
+
if vlm_key_values is None:
|
| 249 |
+
raise ValueError("You must specify vlm_cache")
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
hidden_states = inputs_embeds
|
| 255 |
+
|
| 256 |
+
# create position embeddings to be shared across the decoder layers
|
| 257 |
+
#position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 258 |
+
|
| 259 |
+
# decoder layers
|
| 260 |
+
all_hidden_states = () if output_hidden_states else None
|
| 261 |
+
all_self_attns = () if output_attentions else None
|
| 262 |
+
|
| 263 |
+
for decoder_layer in self.layers:
|
| 264 |
+
if output_hidden_states:
|
| 265 |
+
all_hidden_states += (hidden_states,)
|
| 266 |
+
|
| 267 |
+
layer_outputs = decoder_layer(
|
| 268 |
+
hidden_states,
|
| 269 |
+
attention_mask=expert_attention_mask,
|
| 270 |
+
position_ids=position_ids,
|
| 271 |
+
past_key_value=vlm_key_values,
|
| 272 |
+
output_attentions=output_attentions,
|
| 273 |
+
use_cache=use_cache,
|
| 274 |
+
cache_position=cache_position,
|
| 275 |
+
position_embeddings=None,
|
| 276 |
+
**kwargs,
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
hidden_states = layer_outputs[0]
|
| 280 |
+
|
| 281 |
+
if output_attentions:
|
| 282 |
+
all_self_attns += (layer_outputs[1],)
|
| 283 |
+
|
| 284 |
+
hidden_states = self.norm(hidden_states)
|
| 285 |
+
|
| 286 |
+
# add hidden states from the last decoder layer
|
| 287 |
+
if output_hidden_states:
|
| 288 |
+
all_hidden_states += (hidden_states,)
|
| 289 |
+
|
| 290 |
+
if not return_dict:
|
| 291 |
+
return tuple(
|
| 292 |
+
v for v in [hidden_states, vlm_key_values, all_hidden_states, all_self_attns] if v is not None
|
| 293 |
+
)
|
| 294 |
+
return BaseModelOutputWithPast(
|
| 295 |
+
last_hidden_state=hidden_states,
|
| 296 |
+
past_key_values=vlm_key_values,
|
| 297 |
+
hidden_states=all_hidden_states,
|
| 298 |
+
attentions=all_self_attns,
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
import tensorflow as tf
|
| 302 |
+
import dlimp as dl
|
| 303 |
+
import PIL.Image as Image
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def resize_image(image1):
|
| 307 |
+
#image1 = ds_combined[0]['observation.images.scene']
|
| 308 |
+
#image1 = image1.reshape(480,640,3)
|
| 309 |
+
image1 = tf.cast(image1*255, dtype=tf.uint8)
|
| 310 |
+
image1 = image1.numpy().transpose(1,2,0)
|
| 311 |
+
image1 = dl.transforms.resize_image(image1, size=(224,224))
|
| 312 |
+
|
| 313 |
+
image1 = Image.fromarray(image1.numpy())
|
| 314 |
+
return image1
|
| 315 |
+
|
| 316 |
+
class VLAWithExpert(nn.Module):
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
_ACTION_TOKEN_MIN = 151665
|
| 320 |
+
_ACTION_TOKEN_MAX = 153712
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
def __init__(self,config=None,device=None):
|
| 324 |
+
super().__init__()
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
self.vlm = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 328 |
+
"declare-lab/nora-long",
|
| 329 |
+
torch_dtype=torch.bfloat16,
|
| 330 |
+
attn_implementation="sdpa",
|
| 331 |
+
)
|
| 332 |
+
if config is not None:
|
| 333 |
+
self.config = config
|
| 334 |
+
else:
|
| 335 |
+
self.config = {'max_action_dim':7,"max_state_dim":8}
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
print("Loading expert model...")
|
| 339 |
+
|
| 340 |
+
self.lm_expert_config = copy.deepcopy(self.vlm.config.text_config)
|
| 341 |
+
|
| 342 |
+
#lm_expert_config = copy.deepcopy(model.config.text_config)
|
| 343 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 344 |
+
"declare-lab/nora", trust_remote_code=True
|
| 345 |
+
)
|
| 346 |
+
self.fast_tokenizer = fast_tokenizer = AutoProcessor.from_pretrained(
|
| 347 |
+
"physical-intelligence/fast", trust_remote_code=True
|
| 348 |
+
)
|
| 349 |
+
self.fast_tokenizer.action_dim = 7
|
| 350 |
+
self.fast_tokenizer.time_horizon = 5
|
| 351 |
+
hidden_size = self.lm_expert_config.hidden_size
|
| 352 |
+
expert_width_multiplier = 0.375
|
| 353 |
+
self.lm_expert_config.hidden_size = int(hidden_size * expert_width_multiplier) # hidden_size // 2
|
| 354 |
+
self.lm_expert_config.intermediate_size = get_intermediate_size(int(hidden_size * expert_width_multiplier))
|
| 355 |
+
self.lm_expert_config.num_hidden_layers = self.vlm.config.num_hidden_layers
|
| 356 |
+
self.lm_expert_config.num_attention_heads = 6
|
| 357 |
+
|
| 358 |
+
self.action_expert = Qwen2_5_VLAExpert._from_config(self.lm_expert_config,torch_dtype=torch.bfloat16)
|
| 359 |
+
self.action_chunk_length = 5
|
| 360 |
+
|
| 361 |
+
self.device = self.vlm.device
|
| 362 |
+
# Replace the action expert's attention layers
|
| 363 |
+
|
| 364 |
+
self._replace_action_expert_attention()
|
| 365 |
+
self.action_expert.embed_tokens = None
|
| 366 |
+
self.vlm_kv_cache = None
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
# self.state_proj = nn.Linear(
|
| 370 |
+
# self.config['max_state_dim'], hidden_size
|
| 371 |
+
# )
|
| 372 |
+
self.action_in_proj = nn.Linear(self.config['max_action_dim'],self.lm_expert_config.hidden_size)
|
| 373 |
+
self.action_out_proj = nn.Linear(self.lm_expert_config.hidden_size, self.config['max_action_dim'])
|
| 374 |
+
self.action_time_mlp_in = nn.Linear(
|
| 375 |
+
self.lm_expert_config.hidden_size * 2, self.lm_expert_config.hidden_size
|
| 376 |
+
)
|
| 377 |
+
self.action_time_mlp_out = nn.Linear(
|
| 378 |
+
self.lm_expert_config.hidden_size, self.lm_expert_config.hidden_size
|
| 379 |
+
)
|
| 380 |
+
self.state_emb = nn.Linear(self.config['max_action_dim'], self.lm_expert_config.hidden_size)
|
| 381 |
+
|
| 382 |
+
self.device = self.vlm.device
|
| 383 |
+
print(f"*** Loading normalization stats from HF Hub ***")
|
| 384 |
+
norm_stats_path = hf_hub_download(repo_id='declare-lab/nora', filename="norm_stats.json")
|
| 385 |
+
with open(norm_stats_path, "r") as f:
|
| 386 |
+
self.norm_stats = json.load(f)
|
| 387 |
+
|
| 388 |
+
libero_stats = hf_hub_download(repo_id='moojink/openvla-7b-oft-finetuned-libero-spatial-object-goal-10', filename="dataset_statistics.json")
|
| 389 |
+
with open(libero_stats, "r") as f:
|
| 390 |
+
self.norm_stats.update(json.load(f))
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def sample_noise(self, shape, device,dtype=torch.float32):
|
| 401 |
+
noise = torch.normal(
|
| 402 |
+
mean=0.0,
|
| 403 |
+
std=1.0,
|
| 404 |
+
size=shape,
|
| 405 |
+
dtype=dtype,
|
| 406 |
+
device=device,
|
| 407 |
+
)
|
| 408 |
+
return noise
|
| 409 |
+
def sample_time(self, bsize, device,dtype=torch.float32):
|
| 410 |
+
beta_dist = torch.distributions.Beta(concentration1=1.5, concentration0=1.0)
|
| 411 |
+
time_beta = beta_dist.sample((bsize,)).to(device=device, dtype=dtype)
|
| 412 |
+
time = time_beta * 0.999 + 0.001
|
| 413 |
+
return time
|
| 414 |
+
|
| 415 |
+
def _replace_action_expert_attention(self):
|
| 416 |
+
"""
|
| 417 |
+
Iterate through the model's layers and replace the default
|
| 418 |
+
Qwen2_5_VLAttention with our custom Qwen2_5_VLMoTAttention.
|
| 419 |
+
"""
|
| 420 |
+
for i, layer in enumerate(self.action_expert.layers):
|
| 421 |
+
layer.self_attn = Qwen2_5_VLMoTAttention(
|
| 422 |
+
config=self.action_expert.config,
|
| 423 |
+
layer_idx=i
|
| 424 |
+
).to(self.action_expert.dtype)
|
| 425 |
+
layer.self_attn.to(self.action_expert.device)
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
def denoise_step(
|
| 429 |
+
self,
|
| 430 |
+
x_t: torch.Tensor,
|
| 431 |
+
timestep: torch.Tensor,
|
| 432 |
+
states,
|
| 433 |
+
vlm_kv_cache: tuple,
|
| 434 |
+
full_2d_attn_mask: torch.Tensor):
|
| 435 |
+
"""
|
| 436 |
+
Applies one denoising step to the noisy action `x_t` at a given `timestep`,
|
| 437 |
+
conditioned on the VLM's output cache.
|
| 438 |
+
|
| 439 |
+
This function is derived from the main `forward` pass, encapsulating the
|
| 440 |
+
logic for a single step in the diffusion sampling process.
|
| 441 |
+
|
| 442 |
+
Args:
|
| 443 |
+
self: The instance of the model class.
|
| 444 |
+
x_t (torch.Tensor): The noisy action tensor from the previous step.
|
| 445 |
+
Shape: (batch_size, action_chunk_length, action_dim).
|
| 446 |
+
timestep (torch.Tensor): The current timestep for each sample in the batch.
|
| 447 |
+
Shape: (batch_size,).
|
| 448 |
+
vlm_kv_cache (tuple): The pre-computed key-value cache from the VLM,
|
| 449 |
+
used as conditioning.
|
| 450 |
+
vlm_pad_mask (torch.Tensor): The padding mask for the VLM inputs, required
|
| 451 |
+
to build the cross-attention mask.
|
| 452 |
+
Shape: (batch_size, vlm_seq_len).
|
| 453 |
+
|
| 454 |
+
Returns:
|
| 455 |
+
torch.Tensor: The predicted noise `u_t` (epsilon).
|
| 456 |
+
Shape: (batch_size, action_chunk_length, action_dim).
|
| 457 |
+
"""
|
| 458 |
+
device = x_t.device
|
| 459 |
+
bsz = x_t.shape[0]
|
| 460 |
+
|
| 461 |
+
# 1. Embed the noisy action `x_t`
|
| 462 |
+
x_t = x_t.to(dtype=self.vlm.dtype)
|
| 463 |
+
|
| 464 |
+
action_input_embeds = self.action_in_proj(x_t)
|
| 465 |
+
|
| 466 |
+
# 2. Create sinusoidal time embeddings from the current timestep
|
| 467 |
+
time_emb = create_sinusoidal_pos_embedding(
|
| 468 |
+
timestep,
|
| 469 |
+
self.lm_expert_config.hidden_size,
|
| 470 |
+
4e-3, # Values from your forward pass
|
| 471 |
+
4.0,
|
| 472 |
+
device=device,
|
| 473 |
+
)
|
| 474 |
+
time_emb = time_emb.type(dtype=x_t.dtype)
|
| 475 |
+
# Expand time embedding to match the action embedding dimensions
|
| 476 |
+
time_emb = time_emb[:, None, :].expand_as(action_input_embeds)
|
| 477 |
+
|
| 478 |
+
# 3. Combine action and time embeddings and process through MLPs
|
| 479 |
+
action_time_emb = torch.cat([action_input_embeds, time_emb], dim=2)
|
| 480 |
+
action_time_emb = self.action_time_mlp_in(action_time_emb)
|
| 481 |
+
action_time_emb = F.silu(action_time_emb) # swish activation
|
| 482 |
+
action_time_emb = self.action_time_mlp_out(action_time_emb)
|
| 483 |
+
if states is not None:
|
| 484 |
+
states_embed = self.state_emb(states)
|
| 485 |
+
# print(states_embed.shape,action_input_embeds.shape)
|
| 486 |
+
states_embed = states_embed.unsqueeze(1).expand_as(action_input_embeds)
|
| 487 |
+
action_time_emb += states_embed
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
# 4. Construct the attention mask for the action expert.
|
| 491 |
+
# The expert needs to attend to the VLM context and its own action inputs.
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
# The expert's queries originate from the action sequence, so we slice the mask accordingly.
|
| 495 |
+
# It can attend to the full VLM context and the action sequence.
|
| 496 |
+
expert_attention_mask = full_2d_attn_mask[:, -self.action_chunk_length:, :]
|
| 497 |
+
|
| 498 |
+
# 5. Prepare position_ids for the expert.
|
| 499 |
+
# Note: This implementation mirrors your forward pass, where position_ids for the
|
| 500 |
+
# expert restart from 0.
|
| 501 |
+
position_ids = torch.arange(self.action_chunk_length, device=device)
|
| 502 |
+
|
| 503 |
+
# 6. Call the action expert with the prepared inputs and VLM cache.
|
| 504 |
+
expert_output = self.action_expert(
|
| 505 |
+
inputs_embeds=action_time_emb,
|
| 506 |
+
expert_attention_mask=expert_attention_mask.unsqueeze(1).bool(), # Add head dim
|
| 507 |
+
position_ids=position_ids,
|
| 508 |
+
vlm_key_values=vlm_kv_cache,
|
| 509 |
+
use_cache=True, # As in the original forward pass
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
# 7. Project the expert's output to get the final noise prediction.
|
| 513 |
+
velocity = self.action_out_proj(expert_output.last_hidden_state)
|
| 514 |
+
|
| 515 |
+
return velocity
|
| 516 |
+
|
| 517 |
+
def sample_fast_tokens(self,image,image2=None,instruction=None,states=None,unnormalize=False,do_sample=False):
|
| 518 |
+
device = self.vlm.device
|
| 519 |
+
states = states.to(device)
|
| 520 |
+
#states =
|
| 521 |
+
#print(type(image))
|
| 522 |
+
image = resize_image(image) ## IMPORTANT. ENSURE IMAGE RESIZING METHOD IS CONSISTENT WITH PRETRAINIGN
|
| 523 |
+
#if not isinstance(image, PIL.Image.Image):
|
| 524 |
+
# image = PIL.Image.fromarray(image)
|
| 525 |
+
# Construct messages in the expected chat format. Note that nora expects image of size 224 by 224
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
#image = resize_image(image)
|
| 529 |
+
if image2 is not None:
|
| 530 |
+
image2 = resize_image(image2)
|
| 531 |
+
#if not isinstance(image, PIL.Image.Image):
|
| 532 |
+
#image = PIL.Image.fromarray(image)
|
| 533 |
+
# Construct messages in the expected chat format. Note that nora expects image of size 224 by 224
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
messages = [
|
| 537 |
+
{
|
| 538 |
+
"role": "user",
|
| 539 |
+
"content": [
|
| 540 |
+
{
|
| 541 |
+
"type": "image",
|
| 542 |
+
"image": image,
|
| 543 |
+
"resized_height": 224,
|
| 544 |
+
"resized_width": 224,
|
| 545 |
+
},{
|
| 546 |
+
"type": "image", "image": image2,
|
| 547 |
+
"resized_height": 224,
|
| 548 |
+
"resized_width": 224,
|
| 549 |
+
},
|
| 550 |
+
|
| 551 |
+
{"type": "text", "text": instruction},
|
| 552 |
+
],
|
| 553 |
+
}
|
| 554 |
+
]
|
| 555 |
+
else:
|
| 556 |
+
messages = [
|
| 557 |
+
{
|
| 558 |
+
"role": "user",
|
| 559 |
+
"content": [
|
| 560 |
+
{
|
| 561 |
+
"type": "image",
|
| 562 |
+
"image": image,
|
| 563 |
+
"resized_height": 224,
|
| 564 |
+
"resized_width": 224,
|
| 565 |
+
} ,
|
| 566 |
+
{"type": "text", "text": instruction},
|
| 567 |
+
],
|
| 568 |
+
}
|
| 569 |
+
]
|
| 570 |
+
# Apply chat template to get the text input for the model
|
| 571 |
+
text = self.processor.apply_chat_template(
|
| 572 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
# Process vision information (depends on your process_vision_info function)
|
| 576 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 577 |
+
|
| 578 |
+
# Prepare inputs for the model using the main processor
|
| 579 |
+
#image_inputs, video_inputs = process_vision_info(messages)
|
| 580 |
+
inputs = self.processor(
|
| 581 |
+
text=[text],
|
| 582 |
+
images=image_inputs,
|
| 583 |
+
videos=video_inputs,
|
| 584 |
+
padding=True,
|
| 585 |
+
return_tensors="pt",
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
# Move inputs to GPU
|
| 589 |
+
|
| 590 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 591 |
+
|
| 592 |
+
generated_ids = self.vlm.generate(**inputs,do_sample=True,temperature=1.0)
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
# --- Extract and Decode Action ---
|
| 597 |
+
# Find the indices of tokens within the action token range
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
start_idx = (self._ACTION_TOKEN_MIN <= generated_ids[0]) & (generated_ids[0] <= self._ACTION_TOKEN_MAX)
|
| 601 |
+
start_idx = torch.where(start_idx)[0]
|
| 602 |
+
|
| 603 |
+
if len(start_idx) > 0:
|
| 604 |
+
start_index = start_idx[0].item()
|
| 605 |
+
else:
|
| 606 |
+
start_index = None # or -1 to indicate not found
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
# Extract the first action token ID
|
| 610 |
+
|
| 611 |
+
# Decode the action token using the fast tokenizer
|
| 612 |
+
# The token ID needs to be map back to the range expected by the fast tokenizer decoder
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
output_action = self.fast_tokenizer.decode([generated_ids[0][start_idx] - self._ACTION_TOKEN_MIN])
|
| 617 |
+
return output_action
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
@torch.no_grad()
|
| 621 |
+
def sample_actions(self, image,image2=None,instruction=None,num_steps:int = 25,states=None,unnorm_key='libero_10',unnormalize=True):
|
| 622 |
+
"""
|
| 623 |
+
Generates actions by running the full diffusion sampling process.
|
| 624 |
+
|
| 625 |
+
This function first computes the VLM's key-value cache to use as a
|
| 626 |
+
conditioning context. It then uses an iterative Euler-method-based
|
| 627 |
+
sampler, calling `denoise_step` at each timestep to refine a noise
|
| 628 |
+
tensor into a final action.
|
| 629 |
+
|
| 630 |
+
Args:
|
| 631 |
+
self: The instance of the model class.
|
| 632 |
+
vlm_inputs (dict): A dictionary containing the inputs for the VLM,
|
| 633 |
+
e.g., {'input_ids': ..., 'attention_mask': ...}.
|
| 634 |
+
noise (Tensor, optional): An initial noise tensor to start the
|
| 635 |
+
sampling from. If None, it will be
|
| 636 |
+
sampled randomly. Defaults to None.
|
| 637 |
+
Shape: (batch_size, action_chunk_length, action_dim).
|
| 638 |
+
|
| 639 |
+
Returns:
|
| 640 |
+
Tensor: The final, denoised action tensor.
|
| 641 |
+
Shape: (batch_size, action_chunk_length, action_dim).
|
| 642 |
+
"""
|
| 643 |
+
#vlm_inputs = self.prepare_inputs_for_generation(image,instruction)
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
device = self.vlm.device
|
| 647 |
+
states = states.to(device)
|
| 648 |
+
#states =
|
| 649 |
+
#print(type(image))
|
| 650 |
+
image = resize_image(image) ## IMPORTANT. ENSURE IMAGE RESIZING METHOD IS CONSISTENT WITH PRETRAINIGN
|
| 651 |
+
#if not isinstance(image, PIL.Image.Image):
|
| 652 |
+
# image = PIL.Image.fromarray(image)
|
| 653 |
+
# Construct messages in the expected chat format. Note that nora expects image of size 224 by 224
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
#image = resize_image(image)
|
| 657 |
+
if image2 is not None:
|
| 658 |
+
image2 = resize_image(image2)
|
| 659 |
+
#if not isinstance(image, PIL.Image.Image):
|
| 660 |
+
#image = PIL.Image.fromarray(image)
|
| 661 |
+
# Construct messages in the expected chat format. Note that nora expects image of size 224 by 224
|
| 662 |
+
|
| 663 |
+
|
| 664 |
+
messages = [
|
| 665 |
+
{
|
| 666 |
+
"role": "user",
|
| 667 |
+
"content": [
|
| 668 |
+
{
|
| 669 |
+
"type": "image",
|
| 670 |
+
"image": image,
|
| 671 |
+
"resized_height": 224,
|
| 672 |
+
"resized_width": 224,
|
| 673 |
+
},{
|
| 674 |
+
"type": "image", "image": image2,
|
| 675 |
+
"resized_height": 224,
|
| 676 |
+
"resized_width": 224,
|
| 677 |
+
},
|
| 678 |
+
|
| 679 |
+
{"type": "text", "text": instruction},
|
| 680 |
+
],
|
| 681 |
+
}
|
| 682 |
+
]
|
| 683 |
+
else:
|
| 684 |
+
messages = [
|
| 685 |
+
{
|
| 686 |
+
"role": "user",
|
| 687 |
+
"content": [
|
| 688 |
+
{
|
| 689 |
+
"type": "image",
|
| 690 |
+
"image": image,
|
| 691 |
+
"resized_height": 224,
|
| 692 |
+
"resized_width": 224,
|
| 693 |
+
} ,
|
| 694 |
+
{"type": "text", "text": instruction},
|
| 695 |
+
],
|
| 696 |
+
}
|
| 697 |
+
]
|
| 698 |
+
# Apply chat template to get the text input for the model
|
| 699 |
+
text = self.processor.apply_chat_template(
|
| 700 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 701 |
+
)
|
| 702 |
+
|
| 703 |
+
# Process vision information (depends on your process_vision_info function)
|
| 704 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 705 |
+
|
| 706 |
+
# Prepare inputs for the model using the main processor
|
| 707 |
+
#image_inputs, video_inputs = process_vision_info(messages)
|
| 708 |
+
inputs = self.processor(
|
| 709 |
+
text=[text],
|
| 710 |
+
images=image_inputs,
|
| 711 |
+
videos=video_inputs,
|
| 712 |
+
padding=True,
|
| 713 |
+
return_tensors="pt",
|
| 714 |
+
)
|
| 715 |
+
|
| 716 |
+
# Move inputs to GPU
|
| 717 |
+
|
| 718 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
bsz = inputs['input_ids'].shape[0]
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
|
| 728 |
+
# 1. Pre-compute the VLM cache. This context is the conditioning for the
|
| 729 |
+
# entire denoising process and only needs to be computed once.
|
| 730 |
+
if self.vlm_kv_cache is None:
|
| 731 |
+
vlm_outputs = self.vlm(**inputs)
|
| 732 |
+
vlm_kv_cache = vlm_outputs.past_key_values
|
| 733 |
+
self.vlm_kv_cache = vlm_kv_cache
|
| 734 |
+
|
| 735 |
+
# The VLM's attention mask is its padding mask for the expert.
|
| 736 |
+
|
| 737 |
+
vlm_pad_mask = inputs['attention_mask'].clone()
|
| 738 |
+
|
| 739 |
+
# 2. Initialize the noisy action tensor `x_t`.
|
| 740 |
+
|
| 741 |
+
actions_shape = (bsz, self.action_chunk_length, self.config['max_action_dim'])
|
| 742 |
+
x_t = self.sample_noise(actions_shape, device=device,dtype=self.vlm.dtype)
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
# 3. Set up the time steps for the Euler solver.
|
| 746 |
+
# We will step from t=1 down to t=0.
|
| 747 |
+
#num_steps = self.config.num_steps
|
| 748 |
+
dt = -1.0 / num_steps
|
| 749 |
+
dt_tensor = torch.tensor(dt, dtype=self.vlm.dtype, device=device)
|
| 750 |
+
time = torch.tensor(1.0, dtype=self.vlm.dtype, device=device)
|
| 751 |
+
states = states.to(self.vlm.dtype)
|
| 752 |
+
|
| 753 |
+
# 4. Iteratively denoise using the Euler method.
|
| 754 |
+
# The loop continues as long as time is greater than or equal to zero.
|
| 755 |
+
action_pad_mask = torch.ones(bsz, self.action_chunk_length, device=device).bool()
|
| 756 |
+
|
| 757 |
+
# An all-zero attention mask for the action part allows for full bidirectional attention
|
| 758 |
+
# within the action chunk, as seen in the original forward pass.
|
| 759 |
+
action_attn_mask = torch.zeros(bsz, self.action_chunk_length, device=device).bool()
|
| 760 |
+
|
| 761 |
+
# Concatenate VLM (prefix) and action masks.
|
| 762 |
+
# The VLM's attention mask is its padding mask.
|
| 763 |
+
concat_pad_mask = torch.cat([vlm_pad_mask, action_pad_mask], dim=1)
|
| 764 |
+
concat_attn_mask = torch.cat([vlm_pad_mask, action_attn_mask], dim=1)
|
| 765 |
+
|
| 766 |
+
# Create the full 2D attention mask for the combined sequence.
|
| 767 |
+
full_2d_attn_mask = make_att_2d_masks(concat_pad_mask, concat_attn_mask)
|
| 768 |
+
while time >= -dt / 2: # Loop until t=0
|
| 769 |
+
with torch.no_grad():
|
| 770 |
+
# Expand the current time to match the batch size.
|
| 771 |
+
expanded_time = time.expand(bsz)
|
| 772 |
+
|
| 773 |
+
# Call the denoise_step function to predict the velocity v_t (or noise u_t).
|
| 774 |
+
# The function takes the current noisy action, timestep, and the
|
| 775 |
+
# pre-computed VLM cache and padding mask as input.
|
| 776 |
+
#print(expanded_time)
|
| 777 |
+
v_t = self.denoise_step(
|
| 778 |
+
x_t=x_t,
|
| 779 |
+
timestep=expanded_time,
|
| 780 |
+
states=states,
|
| 781 |
+
vlm_kv_cache=self.vlm_kv_cache,
|
| 782 |
+
full_2d_attn_mask=full_2d_attn_mask,
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
# 5. Apply the Euler integration step to update the action tensor.
|
| 786 |
+
# This moves the action slightly along the direction of the predicted velocity.
|
| 787 |
+
x_t += dt * v_t
|
| 788 |
+
time += dt
|
| 789 |
+
|
| 790 |
+
# 6. Return the final denoised action.
|
| 791 |
+
normalized_action = x_t.cpu().float().numpy()
|
| 792 |
+
#self.vlm_kv_cache = None
|
| 793 |
+
if unnormalize is False:
|
| 794 |
+
|
| 795 |
+
return normalized_action
|
| 796 |
+
|
| 797 |
+
action_stats = self._get_action_stats(unnorm_key)
|
| 798 |
+
|
| 799 |
+
mask = action_stats.get("mask", np.ones_like(action_stats["q01"], dtype=bool))
|
| 800 |
+
action_high, action_low = np.array(action_stats["q99"]), np.array(action_stats["q01"])
|
| 801 |
+
|
| 802 |
+
actions = np.where(
|
| 803 |
+
mask,
|
| 804 |
+
0.5 * (normalized_action + 1) * (action_high - action_low) + action_low,
|
| 805 |
+
normalized_action,
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
return actions
|
| 809 |
+
|
| 810 |
+
def _get_action_stats(self, unnorm_key: str) -> Dict[str, Any]:
|
| 811 |
+
if unnorm_key not in self.norm_stats:
|
| 812 |
+
raise KeyError(
|
| 813 |
+
f"The `unnorm_key` '{unnorm_key}' is not in the set of available dataset statistics. "
|
| 814 |
+
f"Please choose from: {list(self.norm_stats.keys())}"
|
| 815 |
+
)
|
| 816 |
+
return self.norm_stats[unnorm_key]["action"]
|
| 817 |
+
def forward(self,vlm_inputs, actions,alpha=10.0,use_state=False,states=None ,**kwargs):
|
| 818 |
+
"""
|
| 819 |
+
The main forward pass that uses the student model with the expert's cache.
|
| 820 |
+
"""
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
# The magic happens here: we pass the expert cache into the student's forward call.
|
| 824 |
+
# This will require modifying how arguments are passed down.
|
| 825 |
+
## Precompute the VLM cache with only VLM inputs/attention mask
|
| 826 |
+
## Let the Qwen2_5 vlm settle its own attention mask.
|
| 827 |
+
device = self.vlm.device
|
| 828 |
+
|
| 829 |
+
vlm_outputs = self.vlm(
|
| 830 |
+
**vlm_inputs,
|
| 831 |
+
use_cache=True
|
| 832 |
+
)
|
| 833 |
+
vlm_kv_cache = vlm_outputs.past_key_values
|
| 834 |
+
|
| 835 |
+
## Construct attention mask for the action expert.
|
| 836 |
+
## The action expert should be able to attend to the VLM inputs and its own action inputs. ( Prefix + bidirectional attention)
|
| 837 |
+
|
| 838 |
+
bsz = vlm_inputs['input_ids'].shape[0]
|
| 839 |
+
vlm_pad_mask = vlm_inputs['expert_attention'].clone()
|
| 840 |
+
vlm_attn_mask = vlm_inputs['attention_mask'].clone()
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
|
| 844 |
+
actions = actions.to(self.vlm.dtype)
|
| 845 |
+
noise = self.sample_noise(actions.shape, actions.device,dtype=actions.dtype)
|
| 846 |
+
|
| 847 |
+
|
| 848 |
+
time = self.sample_time(actions.shape[0], actions.device,dtype=actions.dtype)
|
| 849 |
+
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
time_expanded = time[:, None, None]
|
| 853 |
+
|
| 854 |
+
|
| 855 |
+
x_t = time_expanded * noise + (1 - time_expanded) * actions
|
| 856 |
+
u_t = noise - actions
|
| 857 |
+
#x_t = x_t.to(self.vlm.dtype)
|
| 858 |
+
action_input_embeds = self.action_in_proj(x_t) ## Embed noisy action
|
| 859 |
+
|
| 860 |
+
time_emb = create_sinusoidal_pos_embedding(
|
| 861 |
+
time,
|
| 862 |
+
self.lm_expert_config.hidden_size,
|
| 863 |
+
4e-3,
|
| 864 |
+
4.0,
|
| 865 |
+
device=device,
|
| 866 |
+
)
|
| 867 |
+
|
| 868 |
+
time_emb = time_emb.type(dtype=actions.dtype)
|
| 869 |
+
|
| 870 |
+
time_emb = time_emb[:, None, :].expand_as(action_input_embeds)
|
| 871 |
+
|
| 872 |
+
|
| 873 |
+
action_time_emb = torch.cat([action_input_embeds, time_emb], dim=2) ## concat on the hidden size dim
|
| 874 |
+
|
| 875 |
+
action_time_emb = self.action_time_mlp_in(action_time_emb) ## simple linear layer to project back to hidden size dim
|
| 876 |
+
action_time_emb = F.silu(action_time_emb) # swish == silu
|
| 877 |
+
action_time_emb = self.action_time_mlp_out(action_time_emb) ##
|
| 878 |
+
|
| 879 |
+
if use_state:
|
| 880 |
+
|
| 881 |
+
states_embed = self.state_emb(states)
|
| 882 |
+
|
| 883 |
+
states_embed = states_embed.unsqueeze(1).expand_as(action_input_embeds)
|
| 884 |
+
action_time_emb += states_embed
|
| 885 |
+
|
| 886 |
+
|
| 887 |
+
|
| 888 |
+
|
| 889 |
+
|
| 890 |
+
|
| 891 |
+
action_pad_mask = torch.ones(bsz,self.action_chunk_length,device=device).bool()
|
| 892 |
+
action_attn_mask = torch.zeros(bsz,self.action_chunk_length,device=device).bool()
|
| 893 |
+
|
| 894 |
+
concat_action_mask = torch.cat([vlm_pad_mask,action_pad_mask],dim=1)
|
| 895 |
+
concat_attn_mask = torch.cat([vlm_attn_mask,action_attn_mask],dim=1)
|
| 896 |
+
|
| 897 |
+
attn = make_att_2d_masks(concat_action_mask,concat_attn_mask)
|
| 898 |
+
expert_attention_mask = attn[:, -self.action_chunk_length:, :]
|
| 899 |
+
|
| 900 |
+
|
| 901 |
+
position_ids = torch.arange(self.action_chunk_length,device=device)
|
| 902 |
+
expert_output = self.action_expert(inputs_embeds=action_time_emb,
|
| 903 |
+
expert_attention_mask=expert_attention_mask.unsqueeze(1).bool(),
|
| 904 |
+
position_ids= position_ids,
|
| 905 |
+
vlm_key_values=vlm_kv_cache,
|
| 906 |
+
use_cache=True)
|
| 907 |
+
|
| 908 |
+
action_out = self.action_out_proj(expert_output.last_hidden_state)
|
| 909 |
+
expert_loss = alpha*F.mse_loss(action_out, u_t, reduction='mean')
|
| 910 |
+
|
| 911 |
+
loss = expert_loss+ vlm_outputs.loss
|
| 912 |
+
|
| 913 |
+
return {'expert_loss': expert_loss,'combined_loss':loss,'vlm_loss':vlm_outputs.loss}
|