File size: 11,495 Bytes
aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 aad25b1 1897004 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import os
import base64
import numpy as np
import cv2
import faiss
import torch
import insightface
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
from PIL import Image, ImageOps
import io
import logging
from datetime import datetime
app = FastAPI(title="Orcan VisionTrace Hybrid GPU Service", version="1.0.0")
# Global models
face_app = None
use_gpu_face_recognition = False
class BatchEmbeddingRequest(BaseModel):
images: List[str] # Base64 encoded images
enhance_quality: bool = True
aggressive_enhancement: bool = False
class IndexCreationRequest(BaseModel):
embeddings: List[List[float]]
dataset_size: int
dimension: int = 512
@app.on_event("startup")
async def startup_event():
global face_app, use_gpu_face_recognition
print("Starting Orcan VisionTrace Hybrid Service...")
# Check GPU availability
use_gpu_face_recognition = torch.cuda.is_available()
print(f"CUDA Available: {use_gpu_face_recognition}")
if use_gpu_face_recognition:
print("GPU detected - Using CUDA for face recognition")
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
ctx_id = 0
else:
print("No GPU detected - Using CPU for face recognition")
providers = ['CPUExecutionProvider']
ctx_id = -1
try:
# Initialize InsightFace
face_app = insightface.app.FaceAnalysis(
providers=providers,
allowed_modules=['detection', 'recognition']
)
face_app.prepare(ctx_id=ctx_id, det_size=(640, 640))
print("InsightFace initialized successfully")
except Exception as e:
print(f"Error initializing InsightFace: {e}")
# Fallback to CPU
face_app = insightface.app.FaceAnalysis(
providers=['CPUExecutionProvider'],
allowed_modules=['detection', 'recognition']
)
face_app.prepare(ctx_id=-1, det_size=(640, 640))
use_gpu_face_recognition = False
print("Fallback to CPU face recognition")
print(f"Service ready - Face Recognition: {'GPU' if use_gpu_face_recognition else 'CPU'}, FAISS: CPU")
@app.get("/")
async def root():
return {
"service": "Orcan VisionTrace Hybrid GPU Service",
"status": "running",
"face_recognition": "GPU" if use_gpu_face_recognition else "CPU",
"faiss_indexing": "CPU",
"version": "1.0.0"
}
@app.get("/health")
async def health_check():
return {
"status": "healthy",
"gpu_available": torch.cuda.is_available(),
"face_model_loaded": face_app is not None,
"using_gpu_face_recognition": use_gpu_face_recognition,
"faiss_mode": "CPU",
"timestamp": datetime.utcnow().isoformat()
}
@app.post("/extract_embeddings_batch")
async def extract_embeddings_batch(request: BatchEmbeddingRequest):
"""Extract face embeddings from multiple images using GPU acceleration"""
try:
embeddings = []
extraction_info = []
print(f"Processing batch of {len(request.images)} images")
for idx, img_b64 in enumerate(request.images):
try:
# Decode base64 image
img_data = base64.b64decode(img_b64)
img_array = np.frombuffer(img_data, dtype=np.uint8)
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
if img is None:
embeddings.append(None)
extraction_info.append({"error": "Failed to decode image", "index": idx})
continue
# Apply enhancement if requested
if request.enhance_quality:
img = enhance_image(img, request.aggressive_enhancement)
# Extract face embeddings using GPU/CPU
faces = face_app.get(img)
if len(faces) == 0:
embeddings.append(None)
extraction_info.append({
"face_count": 0,
"strategy_used": "gpu_batch" if use_gpu_face_recognition else "cpu_batch",
"enhancement_used": request.enhance_quality,
"index": idx
})
continue
# Get best face (largest bounding box)
face = max(faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
embedding = face.embedding
# Normalize embedding
embedding = embedding / np.linalg.norm(embedding)
embeddings.append(embedding.tolist())
# Calculate quality metrics
bbox_area = (face.bbox[2] - face.bbox[0]) * (face.bbox[3] - face.bbox[1])
img_area = img.shape[0] * img.shape[1]
face_size_ratio = bbox_area / img_area
extraction_info.append({
"face_count": len(faces),
"confidence": float(face_size_ratio),
"strategy_used": "gpu_batch" if use_gpu_face_recognition else "cpu_batch",
"enhancement_used": request.enhance_quality,
"quality_score": min(face_size_ratio * 2.0, 1.0),
"bbox_area": float(bbox_area),
"index": idx
})
except Exception as e:
embeddings.append(None)
extraction_info.append({"error": str(e), "index": idx})
successful_count = len([e for e in embeddings if e is not None])
print(f"Batch processing complete: {successful_count}/{len(request.images)} successful")
return {
"embeddings": embeddings,
"extraction_info": extraction_info,
"total_processed": len(request.images),
"successful": successful_count,
"processing_mode": "gpu" if use_gpu_face_recognition else "cpu"
}
except Exception as e:
print(f"Batch processing error: {e}")
raise HTTPException(status_code=500, detail=str(e))
def enhance_image(img, aggressive=False):
"""Enhanced image quality improvement"""
try:
if aggressive:
# Aggressive enhancement for very poor quality images
img = cv2.bilateralFilter(img, 15, 90, 90)
# Histogram equalization
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=4.0, tileGridSize=(8,8))
l = clahe.apply(l)
img = cv2.merge([l, a, b])
img = cv2.cvtColor(img, cv2.COLOR_LAB2BGR)
# Strong sharpening
kernel = np.array([[-1,-1,-1], [-1, 12,-1], [-1,-1,-1]])
img = cv2.filter2D(img, -1, kernel)
# Gamma correction
gamma = 1.4
inv_gamma = 1.0 / gamma
table = np.array([((i / 255.0) ** inv_gamma) * 255 for i in np.arange(0, 256)]).astype("uint8")
img = cv2.LUT(img, table)
else:
# Standard enhancement
img = cv2.bilateralFilter(img, 9, 75, 75)
# Sharpening
kernel = np.array([[-1,-1,-1], [-1, 9,-1], [-1,-1,-1]])
img = cv2.filter2D(img, -1, kernel)
# CLAHE
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
l = clahe.apply(l)
img = cv2.merge([l, a, b])
img = cv2.cvtColor(img, cv2.COLOR_LAB2BGR)
return img
except Exception as e:
print(f"Enhancement error: {e}")
return img
@app.post("/create_faiss_index")
async def create_faiss_index(request: IndexCreationRequest):
"""Create FAISS index using CPU (hybrid approach)"""
try:
embeddings_array = np.array(request.embeddings, dtype='float32')
print(f"Creating FAISS index for {embeddings_array.shape[0]} vectors")
# Choose optimal index type based on dataset size
if request.dataset_size < 1000:
index = faiss.IndexFlatL2(request.dimension)
index_type = "IndexFlatL2"
params = {}
elif request.dataset_size < 50000:
nlist = max(4, min(request.dataset_size // 39, 100))
quantizer = faiss.IndexFlatL2(request.dimension)
index = faiss.IndexIVFFlat(quantizer, request.dimension, nlist)
index_type = "IndexIVFFlat"
params = {"nlist": nlist}
else:
nlist = max(100, min(request.dataset_size // 39, 1000))
quantizer = faiss.IndexFlatL2(request.dimension)
index = faiss.IndexIVFPQ(quantizer, request.dimension, nlist, 64, 8)
index_type = "IndexIVFPQ"
params = {"nlist": nlist, "m": 64, "nbits": 8}
# Train index if needed
if hasattr(index, 'train') and not index.is_trained:
print(f"Training {index_type} index...")
index.train(embeddings_array)
print("Index training completed")
# Add vectors to index
index.add(embeddings_array)
print(f"Added {index.ntotal} vectors to index")
# Serialize index
index_data = faiss.serialize_index(index)
index_b64 = base64.b64encode(index_data).decode()
return {
"index_data": index_b64,
"index_type": f"CPU_{index_type}",
"index_params": params,
"vectors_added": index.ntotal,
"dataset_size": request.dataset_size
}
except Exception as e:
print(f"Index creation error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/search_faiss")
async def search_faiss(request: dict):
"""Perform similarity search using CPU FAISS"""
try:
# Deserialize index
index_data = base64.b64decode(request["index_data"])
index = faiss.deserialize_index(np.frombuffer(index_data, dtype=np.uint8))
query_embedding = np.array([request["query_embedding"]], dtype='float32')
k = request.get("k", 25)
print(f"Searching index with {index.ntotal} vectors for top-{k}")
# Perform search on CPU
distances, indices = index.search(query_embedding, k)
return {
"distances": distances[0].tolist(),
"indices": indices[0].tolist(),
"total_vectors": index.ntotal,
"search_mode": "cpu"
}
except Exception as e:
print(f"Search error: {e}")
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |