Update diffloss.py
Browse files- diffloss.py +5 -20
diffloss.py
CHANGED
|
@@ -5,7 +5,6 @@ import math
|
|
| 5 |
|
| 6 |
from .diffusion import create_diffusion
|
| 7 |
|
| 8 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
|
| 10 |
class DiffLoss(nn.Module):
|
| 11 |
"""Diffusion Loss"""
|
|
@@ -36,12 +35,12 @@ class DiffLoss(nn.Module):
|
|
| 36 |
def sample(self, z, temperature=1.0, cfg=1.0):
|
| 37 |
# diffusion loss sampling
|
| 38 |
if not cfg == 1.0:
|
| 39 |
-
noise = torch.randn(z.shape[0] // 2, self.in_channels).
|
| 40 |
noise = torch.cat([noise, noise], dim=0)
|
| 41 |
model_kwargs = dict(c=z, cfg_scale=cfg)
|
| 42 |
sample_fn = self.net.forward_with_cfg
|
| 43 |
else:
|
| 44 |
-
noise = torch.randn(z.shape[0], self.in_channels).
|
| 45 |
model_kwargs = dict(c=z)
|
| 46 |
sample_fn = self.net.forward
|
| 47 |
|
|
@@ -91,23 +90,9 @@ class TimestepEmbedder(nn.Module):
|
|
| 91 |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 92 |
return embedding
|
| 93 |
|
| 94 |
-
# def forward(self, t):
|
| 95 |
-
# t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 96 |
-
# t_emb = self.mlp(t_freq)
|
| 97 |
-
# return t_emb
|
| 98 |
def forward(self, t):
|
| 99 |
-
|
| 100 |
-
device = next(self.mlp.parameters()).device
|
| 101 |
-
|
| 102 |
-
t = t.to(device)
|
| 103 |
-
|
| 104 |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 105 |
-
|
| 106 |
-
t_freq = t_freq.to(device)
|
| 107 |
-
|
| 108 |
t_emb = self.mlp(t_freq)
|
| 109 |
-
|
| 110 |
-
|
| 111 |
return t_emb
|
| 112 |
|
| 113 |
|
|
@@ -145,7 +130,7 @@ class ResBlock(nn.Module):
|
|
| 145 |
|
| 146 |
class FinalLayer(nn.Module):
|
| 147 |
"""
|
| 148 |
-
The final layer
|
| 149 |
"""
|
| 150 |
def __init__(self, model_channels, out_channels):
|
| 151 |
super().__init__()
|
|
@@ -232,10 +217,10 @@ class SimpleMLPAdaLN(nn.Module):
|
|
| 232 |
def forward(self, x, t, c):
|
| 233 |
"""
|
| 234 |
Apply the model to an input batch.
|
| 235 |
-
:param x: an [N x C
|
| 236 |
:param t: a 1-D batch of timesteps.
|
| 237 |
:param c: conditioning from AR transformer.
|
| 238 |
-
:return: an [N x C
|
| 239 |
"""
|
| 240 |
x = self.input_proj(x)
|
| 241 |
t = self.time_embed(t)
|
|
|
|
| 5 |
|
| 6 |
from .diffusion import create_diffusion
|
| 7 |
|
|
|
|
| 8 |
|
| 9 |
class DiffLoss(nn.Module):
|
| 10 |
"""Diffusion Loss"""
|
|
|
|
| 35 |
def sample(self, z, temperature=1.0, cfg=1.0):
|
| 36 |
# diffusion loss sampling
|
| 37 |
if not cfg == 1.0:
|
| 38 |
+
noise = torch.randn(z.shape[0] // 2, self.in_channels).cuda()
|
| 39 |
noise = torch.cat([noise, noise], dim=0)
|
| 40 |
model_kwargs = dict(c=z, cfg_scale=cfg)
|
| 41 |
sample_fn = self.net.forward_with_cfg
|
| 42 |
else:
|
| 43 |
+
noise = torch.randn(z.shape[0], self.in_channels).cuda()
|
| 44 |
model_kwargs = dict(c=z)
|
| 45 |
sample_fn = self.net.forward
|
| 46 |
|
|
|
|
| 90 |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 91 |
return embedding
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
def forward(self, t):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
|
|
|
|
|
|
|
|
|
| 95 |
t_emb = self.mlp(t_freq)
|
|
|
|
|
|
|
| 96 |
return t_emb
|
| 97 |
|
| 98 |
|
|
|
|
| 130 |
|
| 131 |
class FinalLayer(nn.Module):
|
| 132 |
"""
|
| 133 |
+
The final layer adopted from DiT.
|
| 134 |
"""
|
| 135 |
def __init__(self, model_channels, out_channels):
|
| 136 |
super().__init__()
|
|
|
|
| 217 |
def forward(self, x, t, c):
|
| 218 |
"""
|
| 219 |
Apply the model to an input batch.
|
| 220 |
+
:param x: an [N x C] Tensor of inputs.
|
| 221 |
:param t: a 1-D batch of timesteps.
|
| 222 |
:param c: conditioning from AR transformer.
|
| 223 |
+
:return: an [N x C] Tensor of outputs.
|
| 224 |
"""
|
| 225 |
x = self.input_proj(x)
|
| 226 |
t = self.time_embed(t)
|