jina-vlm / modeling_jvlm.py
gmastrapas's picture
Model update
3d813dc verified
# Copyright 2025 Jina AI. All rights reserved.
from math import sqrt
from typing import Optional, Tuple, Union
import torch
import torch.backends.cuda
import torch.nn as nn
from transformers import AutoModel, AutoModelForCausalLM, PreTrainedModel
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.processing_utils import Unpack
from .blocks_jvlm import (
MHSDPA,
Dropout,
ExtendedEmbedding,
PatchDropout,
PatchEmbedding,
RotaryEmbedding,
TransformerBlock,
VisionLanguageConnector,
build_layer_norm,
resolve_causal_mask,
)
from .configuration_jvlm import JinaVLMConfig, JinaVLMTextConfig, JinaVLMVisionConfig
class JinaPreTrainedModel(PreTrainedModel):
config: JinaVLMConfig
base_model_prefix = 'model'
supports_gradient_checkpointing = True
_supports_flash_attn = True
_supports_sdpa = True
_no_split_modules = ['TransformerBlock']
_skip_keys_device_placement = 'past_key_values'
_can_compile_fullgraph = True
_supports_attention_backend = True
_can_record_outputs = {
'hidden_states': TransformerBlock,
'attentions': MHSDPA,
}
class JinaVLMVisionModel(JinaPreTrainedModel):
config: JinaVLMVisionConfig
def __init__(self, config: JinaVLMVisionConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.n_layers = config.n_layers
self.input_size = config.input_size
self.patch_size = config.patch_size
self.cls_embed = None
self.pos_embed = None
self.rope = None
self.n_prefix_tokens = 0
self.interpolation = config.positional_interpolation
self.use_cls_token = config.use_cls_token
if self.use_cls_token:
self.cls_embed = nn.Parameter(torch.zeros(self.hidden_size))
self.n_prefix_tokens = 1
if config.use_absolute_positional_embeddings:
if self.n_positions is None:
raise ValueError(
'A fixed number of positions is required to define positional '
'embeddings. Make sure input_size is set.'
)
self.pos_embed = nn.Parameter(
torch.zeros(self.n_positions, self.hidden_size)
)
self.patch_embed = PatchEmbedding(
self.hidden_size,
config.patch_size,
config.n_channels,
config.input_size,
bias=config.patch_embedding_bias,
use_linear=(
config.linear_patch_embedding
if config.input_size is not None
else False
),
)
self.patch_drop = (
PatchDropout(config.patch_dropout)
if config.patch_dropout > 0.0
else nn.Identity()
)
self.layers = nn.ModuleList(
[
TransformerBlock(
config.block_config,
self.hidden_size,
is_causal=False,
layer_idx=i,
attn_implementation=self.config._attn_implementation,
)
for i in range(self.n_layers)
]
)
self.pre_lnorm = nn.Identity()
if self.config.pre_lnorm:
self.pre_lnorm = build_layer_norm(
config.block_config.lnorm_config, size=self.hidden_size
)
self.post_lnorm = nn.Identity()
if self.config.post_lnorm:
self.post_lnorm = build_layer_norm(
config.block_config.lnorm_config, size=self.hidden_size
)
self.vl_connector = VisionLanguageConnector(
config=config.vl_connector_config,
input_size=config.hidden_size * len(config.vit_layers),
intermediate_size=config.hidden_size,
output_size=config.output_size,
n_patches=self.n_patches,
)
self.vit_layers = self.config.vit_layers
self.gradient_checkpointing = False
@property
def n_patches(self) -> Optional[Tuple[int, int]]:
if self.input_size is None:
return None
h, w = self.input_size
return h // self.patch_size, w // self.patch_size
@property
def n_positions(self) -> Optional[int]:
if self.input_size is None:
return None
n_h, n_w = self.n_patches
n_pos = n_h * n_w
if self.use_cls_token:
n_pos += 1
return n_pos
def add_positional_embedding(
self,
x: torch.Tensor,
patch_num: Tuple[int, int],
) -> torch.Tensor:
cls_pos_emb = None
pos_emb = self.pos_embed
if self.cls_embed is not None:
cls_pos_emb = self.pos_embed[0:1]
pos_emb = self.pos_embed[1:]
n_pos, dim = pos_emb.shape
h, w = int(sqrt(n_pos)), int(sqrt(n_pos))
pos_emb = pos_emb.reshape(h, w, dim)
patch_num_0, patch_num_1 = patch_num
if h != patch_num_0 or w != patch_num_1:
# Derived from
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
# antialias: default True in jax.image.resize
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
pos_emb = nn.functional.interpolate(
pos_emb,
size=(patch_num_0, patch_num_1),
mode=self.interpolation,
align_corners=False,
antialias=True,
)
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
if cls_pos_emb is not None:
pos = torch.cat([cls_pos_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(
x.dtype
)
else:
pos = pos_emb[None, :, :].to(x.dtype)
return x + pos
def get_visual_features(
self,
images: torch.Tensor,
**kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutput:
x, shape = self.patch_embed(images)
if self.cls_embed is not None:
cls = self.cls_embed.view(1, 1, -1).expand(x.shape[0], -1, -1).to(x.dtype)
x = torch.cat([cls, x], dim=1)
if self.pos_embed is not None:
assert shape == self.n_patches
x = self.add_positional_embedding(x, shape)
x = self.patch_drop(x)
x = self.pre_lnorm(x)
hidden_states = []
attentions = []
for layer in self.layers:
x, attn = layer(
x,
attn_implementation=self.config._attn_implementation,
**kwargs,
)
hidden_states.append(x)
attentions.append(attn)
x = self.post_lnorm(x)
hidden_states.append(x)
return BaseModelOutput(
last_hidden_state=x,
hidden_states=tuple(hidden_states),
attentions=tuple(attentions),
)
def forward(
self,
images: torch.Tensor,
image_masks: torch.Tensor,
**kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutput:
b, t, n, d = images.shape
mask = ~torch.all(images.view(b * t, n, d) == -1, dim=(1, 2), keepdim=True)
images = images.view(b * t, n, d)
out = self.get_visual_features(images, **kwargs)
image_features = out.hidden_states
features = []
for layer in self.vit_layers:
feats = image_features[layer]
if self.n_prefix_tokens > 0:
feats = feats[:, 1:]
features.append(feats)
image_features = torch.cat(features, dim=-1)
image_features = image_features * mask
image_features = image_features.view(b, t, n, -1).contiguous()
image_features = self.vl_connector(
image_features,
image_masks,
attn_implementation=self.config._attn_implementation,
**kwargs,
)
return BaseModelOutput(
last_hidden_state=image_features,
hidden_states=out.hidden_states,
attentions=out.attentions,
)
class JinaVLMTextModel(JinaPreTrainedModel):
config: JinaVLMTextConfig
def __init__(self, config: JinaVLMTextConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
if (
self.config.embedding_size is not None
and self.config.embedding_size != self.config.vocab_size
):
if self.config.embedding_size < self.config.vocab_size:
raise ValueError(
'Embedding size should be at least as big as vocab size'
)
elif self.config.embedding_size % 128 != 0:
import warnings
warnings.warn(
(
'Embedding size is not a multiple of 128! This could hurt '
'throughput performance'
),
UserWarning,
)
# this is super slow so make sure torch won't use it
torch.backends.cuda.enable_mem_efficient_sdp(False)
if self.config.additional_vocab_size is not None:
embedding = ExtendedEmbedding(
config.embedding_size or config.vocab_size,
config.additional_vocab_size,
config.hidden_size,
)
else:
embedding = nn.Embedding(
config.embedding_size or config.vocab_size,
config.hidden_size,
)
self.embedding = embedding
self.embedding_dropout = Dropout(config.embedding_dropout)
self.ln_f = build_layer_norm(
config.block_config.lnorm_config, size=config.hidden_size
)
self.rope = None
if self.config.rope:
self.rope = RotaryEmbedding(
self.config,
theta=self.config.rope_theta,
head_dim=self.config.block_config.attn_config.head_dim,
hidden_size=self.config.hidden_size,
partial_rotary_factor=self.config.partial_rotary_factor,
scaling=self.config.rope_scaling,
)
layers = [
TransformerBlock(
config.block_config,
hidden_size=config.hidden_size,
is_causal=True,
layer_idx=i,
attn_implementation=self.config._attn_implementation,
)
for i in range(config.n_layers)
]
setattr(self.config, 'num_hidden_layers', config.n_layers)
self.layers = nn.ModuleList(layers)
self.pos_embedding = None
if not self.config.rope:
self.pos_embedding = nn.Embedding(
config.max_sequence_length,
config.hidden_size,
)
self.gradient_checkpointing = False
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
image_features: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
response_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
'You must specify exactly one of input_ids or inputs_embeds'
)
has_image = image_features is not None
assert not (has_image and inputs_embeds is not None), (
'Cannot provide both image features and input embeddings.'
)
bs, sl = input_ids.size() if inputs_embeds is None else inputs_embeds.size()[:2]
device = input_ids.device if input_ids is not None else inputs_embeds.device
past_length = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
# torch.jit.trace() doesn't support cache objects in the output
if use_cache and past_key_values is None and not torch.jit.is_tracing():
# TODO: Fix in new transformers version
# past_key_values = DynamicCache(config=self.config)
past_key_values = DynamicCache()
if attention_mask is None:
if input_ids is None:
attention_mask = torch.ones((bs, sl), dtype=torch.bool, device=device)
else:
attention_mask = input_ids != -1
if cache_position is None:
cache_position = torch.arange(past_length, past_length + sl, device=device)
if position_ids is None:
position_ids = torch.clamp(
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
min=0,
).broadcast_to((bs, attention_mask.shape[-1]))
if input_ids is not None:
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
x = inputs_embeds
if inputs_embeds is None:
x = self.embedding(input_ids)
if image_features is not None:
num_image, num_patch = image_features.shape[1:3]
assert image_input_idx.shape == (bs, num_image, num_patch)
# insert the image feature into the embedding.
image_features = image_features.view(bs, num_image * num_patch, -1)
image_input_idx = image_input_idx.view(bs, num_image * num_patch)
valid = image_input_idx >= 0
batch_idx = torch.arange(bs, device=x.device)
batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]])
image_features = image_features.to(x.device)
x = x.clone() # Clone x to avoid in-place operation on leaf tensor
x[batch_idx[valid], image_input_idx[valid]] += image_features[valid]
if not self.rope:
pos = self.transformer.wpe(position_ids) # type: ignore
x = pos + x
x = self.embedding_dropout(x)
if self.config.normalize_input_embeds:
x = x * (self.config.hidden_size**0.5)
causal_mask = resolve_causal_mask(
attention_mask,
causal_mask,
past_key_values=past_key_values,
batch_size=bs,
seq_len=sl,
past_length=past_length,
device=x.device,
)
rope_embeddings = None
if self.rope is not None:
rope_embeddings = self.rope(x, position_ids)
all_hidden_states = []
all_attention_weights = []
for layer in self.layers:
x, att_weights = layer(
x=x,
rope_embeddings=rope_embeddings,
attention_mask=causal_mask,
past_key_values=past_key_values,
cache_position=cache_position,
drop_mask=response_mask,
attn_implementation=self.config._attn_implementation,
**kwargs,
)
all_hidden_states.append(x)
if att_weights is not None:
all_attention_weights.append(att_weights)
# Apply final layer norm
# shape: (batch_size, seq_len or 1, d_model)
x = self.ln_f(x)
all_hidden_states.append(x)
return BaseModelOutputWithPast(
last_hidden_state=x,
past_key_values=past_key_values,
hidden_states=tuple(all_hidden_states),
attentions=tuple(all_attention_weights),
)
class JinaVLM(JinaPreTrainedModel):
config: JinaVLMConfig
def __init__(self, config: JinaVLMConfig):
super().__init__(config)
self.vision_model: Optional[JinaVLMVisionModel] = None
if config.vision_config is not None:
self.vision_model = JinaVLMVisionModel._from_config(config.vision_config)
self.language_model = JinaVLMTextModel._from_config(config.text_config)
self.post_init()
def get_input_embeddings(self):
return self.language_model.embedding
def set_input_embeddings(self, value):
self.language_model.embedding = value
def get_decoder(self):
return self.language_model.layers
def set_decoder(self, decoder):
self.language_model.layers = decoder
def get_image_features(
self,
images: torch.Tensor,
image_masks: Optional[torch.Tensor] = None,
) -> torch.Tensor:
image_features = self.vision_model(images, image_masks)
batch_size, num_image, num_patch = image_features.shape[0:3]
return image_features.view(batch_size, num_image * num_patch, -1)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
images: Optional[torch.Tensor] = None,
image_masks: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
response_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
image_features = None
if images is not None and images.shape[1] > 0:
image_out = self.vision_model(images, image_masks, **kwargs)
image_features = image_out.last_hidden_state
return self.language_model(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
causal_mask=causal_mask,
response_mask=response_mask,
position_ids=position_ids,
image_features=image_features,
image_input_idx=image_input_idx,
past_key_values=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
class JinaVLMForConditionalGeneration(JinaPreTrainedModel, GenerationMixin):
_tied_weights_keys = {
'lm_head.weight': 'model.language_model.embedding.embedding.weight'
}
accepts_loss_kwargs = False
config: JinaVLMConfig
def __init__(self, config: JinaVLMConfig):
super().__init__(config)
self.model = JinaVLM(config)
self.lm_head = nn.Linear(
config.text_config.hidden_size,
config.text_config.embedding_size or config.text_config.vocab_size,
bias=False,
)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_decoder(self):
return self.model.get_decoder()
def set_decoder(self, decoder):
self.model.set_decoder(decoder)
def get_image_features(
self,
images: torch.Tensor,
image_masks: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return self.model.get_image_features(images, image_masks)
@property
def language_model(self):
return self.model.language_model
@property
def vision_model(self):
return self.model.vision_model
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
images: Optional[torch.Tensor] = None,
image_masks: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
response_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[FlashAttentionKwargs],
) -> CausalLMOutputWithPast:
outputs = self.model(
input_ids=input_ids,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
causal_mask=causal_mask,
response_mask=response_mask,
position_ids=position_ids,
images=images,
image_masks=image_masks,
image_input_idx=image_input_idx,
past_key_values=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
out = outputs.last_hidden_state
slice_indices = logits_to_keep
if isinstance(logits_to_keep, int):
slice_indices = slice(-logits_to_keep, None)
logits = self.lm_head(out[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits,
labels=labels,
vocab_size=self.config.text_config.vocab_size,
)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
images: Optional[torch.Tensor] = None,
image_masks: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
response_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
):
"""
Overwritten -- During decoding we don't want to forward image inputs
to the model
"""
inputs = super().prepare_inputs_for_generation(
input_ids,
inputs_embeds=inputs_embeds,
images=images,
image_masks=image_masks,
image_input_idx=image_input_idx,
attention_mask=attention_mask,
response_mask=response_mask,
position_ids=position_ids,
past_key_values=past_key_values,
cache_position=cache_position,
use_cache=use_cache,
**kwargs,
)
if cache_position[0] != 0:
inputs['images'] = None
return inputs
JinaVLM.register_for_auto_class(auto_class=AutoModel)
JinaVLMForConditionalGeneration.register_for_auto_class(auto_class=AutoModelForCausalLM)