--- language: en license: mit tags: - text-classification - intent-classification - contact-management - roberta base_model: roberta-base datasets: - custom model-index: - name: assistant-bot-intent-classifier results: - task: type: text-classification name: Intent Classification metrics: - type: accuracy value: 0.95 name: Accuracy --- # Intent Classifier for Contact Management Assistant Bot This model is a fine-tuned RoBERTa-base model for intent classification in contact management tasks. ## Model Description - **Developed by:** Mykyta Kotenko - **Base Model:** [roberta-base](https://huggingface.co/roberta-base) by Facebook AI - **Task:** Text Classification (Intent Recognition) - **Language:** English - **License:** MIT ## Supported Intents This model recognizes 15+ different intents for contact management: ### Contact Management - `add_contact` - Add new contact with name, phone, email, address, birthday - `edit_phone` - Update contact's phone number - `edit_email` - Update contact's email address - `edit_address` - Update contact's address - `delete_contact` - Delete a contact - `show_contact` - Show details of a specific contact - `show_contacts` - List all contacts - `search_contacts` - Search for contacts ### Notes - `add_note` - Add a note to a contact - `show_notes` - Show all notes or notes for a contact - `edit_note` - Edit an existing note - `delete_note` - Delete a note ### Tags - `add_tag` - Add a tag to a contact - `remove_tag` - Remove a tag from a contact ### Other - `show_birthdays` - Show upcoming birthdays - `help` - Show help message - `exit` - Exit the application ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("kms-engineer/assistant-bot-intent-classifier") model = AutoModelForSequenceClassification.from_pretrained("kms-engineer/assistant-bot-intent-classifier") # Create classification pipeline classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) # Classify intent text = "add contact John Smith 212-555-0123 john@example.com" result = classifier(text) print(result) # Output: [{'label': 'add_contact', 'score': 0.98}] # More examples examples = [ "update phone for Sarah to 555-1234", "show all my contacts", "delete contact Bob", "add note for Alice: Call back tomorrow" ] for text in examples: result = classifier(text) print(f"{text} → {result[0]['label']} ({result[0]['score']:.2f})") ``` ## Training Details - **Base Model:** roberta-base - **Training Dataset:** Custom dataset with contact management commands - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Epochs:** 3-5 - **Optimizer:** AdamW ## Intended Use This model is designed for: - Contact management applications - Personal assistant bots - CRM systems with natural language interface - Voice-controlled contact management ## Limitations - Optimized for English language only - Best performance on contact management domain - May not generalize well to other domains without fine-tuning ## Example Predictions ``` Input: "add new contact John Doe 555-1234 john@email.com" Output: add_contact (confidence: 0.99) Input: "change email for Sarah to sarah@newmail.com" Output: edit_email (confidence: 0.97) Input: "show me all contacts" Output: show_contacts (confidence: 0.98) Input: "delete contact Bob" Output: delete_contact (confidence: 0.96) Input: "add tag 'work' to Alice" Output: add_tag (confidence: 0.95) ``` ## Model Architecture Based on RoBERTa (Robustly Optimized BERT Pretraining Approach): - 12 transformer layers - 768 hidden dimensions - 12 attention heads - ~125M parameters ## Citation If you use this model, please cite: ```bibtex @misc{kotenko2025intentclassifier, author = {Kotenko, Mykyta}, title = {Intent Classifier for Contact Management Assistant Bot}, year = {2025}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/kms-engineer/assistant-bot-intent-classifier}}, note = {Based on RoBERTa by Facebook AI} } ``` ## Acknowledgments - **Base Model:** RoBERTa by Facebook AI Research - **Framework:** Hugging Face Transformers - **Inspiration:** Contact management and personal assistant applications ## License MIT License - See LICENSE file for details. This model is a derivative work based on RoBERTa, which is licensed under MIT License by Facebook, Inc. ## Contact - **Author:** Mykyta Kotenko - **Repository:** [assistant-bot](https://github.com/kms-engineer/assistant-bot) - **Issues:** Please report issues on GitHub