chore: add readme
Browse files- README.md +22 -0
- src/demo.py +17 -0
- src/model.py +47 -16
README.md
CHANGED
|
@@ -3,3 +3,25 @@ license: apache-2.0
|
|
| 3 |
---
|
| 4 |
|
| 5 |
refer: https://github.com/facebookresearch/sscd-copy-detection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
| 4 |
|
| 5 |
refer: https://github.com/facebookresearch/sscd-copy-detection
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
```python
|
| 9 |
+
# code in src/demo.py
|
| 10 |
+
import model
|
| 11 |
+
from transformers import pipeline
|
| 12 |
+
from transformers.image_utils import load_image
|
| 13 |
+
|
| 14 |
+
pipe = pipeline(
|
| 15 |
+
task='sscd-copy-detection',
|
| 16 |
+
model='m3/sscd-copy-detection',
|
| 17 |
+
batch_size=10,
|
| 18 |
+
device='cpu',
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
vec1 = pipe(load_image("http://images.cocodataset.org/val2017/000000039769.jpg"))
|
| 22 |
+
vec2 = pipe(load_image("http://images.cocodataset.org/val2017/000000039769.jpg"))
|
| 23 |
+
|
| 24 |
+
import torch.nn.functional as F
|
| 25 |
+
cos_sim = F.cosine_similarity(vec1, vec2, dim=0)
|
| 26 |
+
print('similarity:', cos_sim.item())
|
| 27 |
+
```
|
src/demo.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import model
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from transformers.image_utils import load_image
|
| 4 |
+
|
| 5 |
+
pipe = pipeline(
|
| 6 |
+
task='sscd-copy-detection',
|
| 7 |
+
model='m3/sscd-copy-detection',
|
| 8 |
+
batch_size=10,
|
| 9 |
+
device='cpu',
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
vec1 = pipe(load_image("http://images.cocodataset.org/val2017/000000039769.jpg"))
|
| 13 |
+
vec2 = pipe(load_image("http://images.cocodataset.org/val2017/000000039769.jpg"))
|
| 14 |
+
|
| 15 |
+
import torch.nn.functional as F
|
| 16 |
+
cos_sim = F.cosine_similarity(vec1, vec2, dim=0)
|
| 17 |
+
print('similarity:', round(cos_sim.item(), 3))
|
src/model.py
CHANGED
|
@@ -1,13 +1,15 @@
|
|
| 1 |
from typing import List, Optional, Union
|
| 2 |
from torchvision import transforms
|
| 3 |
from PIL import Image
|
| 4 |
-
|
| 5 |
from transformers.image_processing_utils import BaseImageProcessor
|
| 6 |
-
from transformers import PreTrainedModel,
|
| 7 |
import os
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
import torch
|
| 10 |
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
| 11 |
class SscdImageProcessor(BaseImageProcessor):
|
| 12 |
def __init__(
|
| 13 |
self,
|
|
@@ -52,40 +54,69 @@ class SscdImageProcessor(BaseImageProcessor):
|
|
| 52 |
image = image.convert('RGB')
|
| 53 |
return preprocess(image).unsqueeze(0)
|
| 54 |
|
|
|
|
| 55 |
class SscdConfig(PretrainedConfig):
|
| 56 |
model_type = 'sscd-copy-detection'
|
|
|
|
| 57 |
def __init__(self, model_path: str = None, **kwargs):
|
| 58 |
if model_path is None:
|
| 59 |
model_path = 'sscd_disc_mixup.torchscript.pt'
|
| 60 |
super().__init__(model_path=model_path, **kwargs)
|
| 61 |
|
|
|
|
| 62 |
class SscdModel(PreTrainedModel):
|
| 63 |
config_class = SscdConfig
|
| 64 |
|
| 65 |
-
def __init__(self, config):
|
| 66 |
super().__init__(config)
|
| 67 |
self.dummy_param = nn.Parameter(torch.zeros(0))
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
is_local = os.path.isdir(config.name_or_path)
|
| 72 |
if is_local:
|
| 73 |
config.base_path = config.name_or_path
|
| 74 |
else:
|
| 75 |
-
|
| 76 |
-
config.base_path = os.path.dirname(
|
| 77 |
-
model_path =
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
def forward(self, inputs):
|
| 81 |
-
return self.model(inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
|
|
|
| 89 |
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import List, Optional, Union
|
| 2 |
from torchvision import transforms
|
| 3 |
from PIL import Image
|
|
|
|
| 4 |
from transformers.image_processing_utils import BaseImageProcessor
|
| 5 |
+
from transformers import PretrainedConfig, PreTrainedModel, AutoConfig, AutoImageProcessor, AutoModel
|
| 6 |
import os
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
import torch
|
| 9 |
import torch.nn as nn
|
| 10 |
+
from transformers.pipelines import PIPELINE_REGISTRY
|
| 11 |
+
from transformers.utils import add_end_docstrings
|
| 12 |
+
from transformers.pipelines.base import Pipeline, build_pipeline_init_args
|
| 13 |
class SscdImageProcessor(BaseImageProcessor):
|
| 14 |
def __init__(
|
| 15 |
self,
|
|
|
|
| 54 |
image = image.convert('RGB')
|
| 55 |
return preprocess(image).unsqueeze(0)
|
| 56 |
|
| 57 |
+
|
| 58 |
class SscdConfig(PretrainedConfig):
|
| 59 |
model_type = 'sscd-copy-detection'
|
| 60 |
+
|
| 61 |
def __init__(self, model_path: str = None, **kwargs):
|
| 62 |
if model_path is None:
|
| 63 |
model_path = 'sscd_disc_mixup.torchscript.pt'
|
| 64 |
super().__init__(model_path=model_path, **kwargs)
|
| 65 |
|
| 66 |
+
|
| 67 |
class SscdModel(PreTrainedModel):
|
| 68 |
config_class = SscdConfig
|
| 69 |
|
| 70 |
+
def __init__(self, config, model_path: str = None):
|
| 71 |
super().__init__(config)
|
| 72 |
self.dummy_param = nn.Parameter(torch.zeros(0))
|
| 73 |
+
if model_path is None:
|
| 74 |
+
model_path = config.model_path
|
|
|
|
| 75 |
is_local = os.path.isdir(config.name_or_path)
|
| 76 |
if is_local:
|
| 77 |
config.base_path = config.name_or_path
|
| 78 |
else:
|
| 79 |
+
file_path = hf_hub_download(repo_id=config.name_or_path, filename=model_path)
|
| 80 |
+
config.base_path = os.path.dirname(file_path)
|
| 81 |
+
model_path = config.base_path + '/' + model_path
|
| 82 |
+
if model_path is not None:
|
| 83 |
+
self.model = torch.jit.load(model_path)
|
| 84 |
+
|
| 85 |
+
@classmethod
|
| 86 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 87 |
+
return cls(AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs))
|
| 88 |
|
| 89 |
def forward(self, inputs):
|
| 90 |
+
return self.model(inputs)[0, :]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
@add_end_docstrings(build_pipeline_init_args(has_image_processor=True))
|
| 95 |
+
class SscdPipeline(Pipeline):
|
| 96 |
+
def __init__(self, model, **kwargs):
|
| 97 |
+
self.device_id = kwargs['device']
|
| 98 |
+
super().__init__(model=model, **kwargs)
|
| 99 |
|
| 100 |
+
def _sanitize_parameters(self, **kwargs):
|
| 101 |
+
return {}, {}, {}
|
| 102 |
+
|
| 103 |
+
def preprocess(self, input):
|
| 104 |
+
return self.image_processor.preprocess(input)
|
| 105 |
+
|
| 106 |
+
def _forward(self, inputs):
|
| 107 |
+
return self.model(inputs)
|
| 108 |
|
| 109 |
+
def postprocess(self, model_outputs):
|
| 110 |
+
return model_outputs
|
| 111 |
|
| 112 |
|
| 113 |
+
AutoConfig.register('sscd-copy-detection', SscdConfig)
|
| 114 |
+
AutoModel.register(SscdConfig, SscdModel)
|
| 115 |
+
AutoImageProcessor.register(SscdConfig, slow_image_processor_class=SscdImageProcessor)
|
| 116 |
+
models = AutoModel.from_pretrained('m3/sscd-copy-detection')
|
| 117 |
|
| 118 |
+
PIPELINE_REGISTRY.register_pipeline(
|
| 119 |
+
task='sscd-copy-detection',
|
| 120 |
+
pipeline_class=SscdPipeline,
|
| 121 |
+
pt_model=SscdModel
|
| 122 |
+
)
|