--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ast_classifier results: [] --- # ast_classifier This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5481 - Accuracy: 0.7269 - Precision: 0.6416 - Recall: 0.9728 - F1: 0.7732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4304 | 1.0 | 172 | 0.3436 | 0.8563 | 0.8231 | 0.8913 | 0.8558 | | 0.2198 | 2.0 | 344 | 1.0337 | 0.6684 | 0.5922 | 0.9864 | 0.7401 | | 0.1219 | 3.0 | 516 | 0.5469 | 0.8069 | 0.7180 | 0.9823 | 0.8296 | | 0.0818 | 4.0 | 688 | 1.2336 | 0.7295 | 0.6455 | 0.9647 | 0.7734 | | 0.0317 | 5.0 | 860 | 1.5481 | 0.7269 | 0.6416 | 0.9728 | 0.7732 | ### Framework versions - Transformers 4.57.2 - Pytorch 2.9.0+cu126 - Datasets 3.6.0 - Tokenizers 0.22.1