Upload dc_3dunet_film.py with huggingface_hub
Browse files- dc_3dunet_film.py +269 -0
dc_3dunet_film.py
ADDED
|
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from typing import List
|
| 5 |
+
import math
|
| 6 |
+
|
| 7 |
+
# ==============================================================================
|
| 8 |
+
# == Conditioning Blocks
|
| 9 |
+
# ==============================================================================
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class SinusoidalPosEmb(nn.Module):
|
| 13 |
+
def __init__(self, dim):
|
| 14 |
+
super().__init__()
|
| 15 |
+
self.dim = dim
|
| 16 |
+
|
| 17 |
+
def forward(self, x):
|
| 18 |
+
device = x.device
|
| 19 |
+
half_dim = self.dim // 2
|
| 20 |
+
if half_dim == 0:
|
| 21 |
+
# For dim=1, use sin
|
| 22 |
+
return torch.sin(x).unsqueeze(-1)
|
| 23 |
+
elif half_dim == 1:
|
| 24 |
+
# For dim=2, use sin and cos with scale 1
|
| 25 |
+
emb = x[:, None] * 1.0
|
| 26 |
+
return torch.cat((emb.sin(), emb.cos()), dim=-1)
|
| 27 |
+
else:
|
| 28 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 29 |
+
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
| 30 |
+
emb = x[:, None] * emb[None, :]
|
| 31 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
| 32 |
+
return emb
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class FilmLayer(nn.Module):
|
| 36 |
+
def __init__(self, embedding_dim, num_channels):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.mlp = nn.Sequential(nn.Linear(embedding_dim, num_channels * 2), nn.ReLU())
|
| 39 |
+
|
| 40 |
+
def forward(self, x, context):
|
| 41 |
+
mlp_out = self.mlp(context)
|
| 42 |
+
scale = mlp_out[:, : x.shape[1]]
|
| 43 |
+
bias = mlp_out[:, x.shape[1] :]
|
| 44 |
+
|
| 45 |
+
scale = scale.view(x.shape[0], x.shape[1], 1, 1, 1)
|
| 46 |
+
bias = bias.view(x.shape[0], x.shape[1], 1, 1, 1)
|
| 47 |
+
|
| 48 |
+
return (1.0 + scale) * x + bias
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# ==============================================================================
|
| 52 |
+
# == 3D U-Net Components
|
| 53 |
+
# ==============================================================================
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class ResNetBlock3D(nn.Module):
|
| 57 |
+
"""
|
| 58 |
+
A 3D ResNet block with FiLM conditioning.
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
def __init__(
|
| 62 |
+
self, in_channels: int, out_channels: int, embedding_dim: int, context_frames: int
|
| 63 |
+
):
|
| 64 |
+
super().__init__()
|
| 65 |
+
self.context_frames = context_frames
|
| 66 |
+
|
| 67 |
+
self.conv1 = nn.Conv3d(
|
| 68 |
+
in_channels,
|
| 69 |
+
out_channels,
|
| 70 |
+
kernel_size=(3, 3, 3),
|
| 71 |
+
padding=(1, 1, 1),
|
| 72 |
+
bias=False,
|
| 73 |
+
)
|
| 74 |
+
self.bn1 = nn.Identity() #nn.InstanceNorm3d(out_channels, affine=True)
|
| 75 |
+
self.relu = nn.ReLU(inplace=True)
|
| 76 |
+
self.conv2 = nn.Conv3d(
|
| 77 |
+
out_channels,
|
| 78 |
+
out_channels,
|
| 79 |
+
kernel_size=(3, 3, 3),
|
| 80 |
+
padding=(1, 1, 1),
|
| 81 |
+
bias=False,
|
| 82 |
+
)
|
| 83 |
+
self.bn2 = nn.InstanceNorm3d(out_channels, affine=True)
|
| 84 |
+
|
| 85 |
+
self.film = FilmLayer(embedding_dim, out_channels)
|
| 86 |
+
|
| 87 |
+
self.shortcut = nn.Sequential()
|
| 88 |
+
if in_channels != out_channels:
|
| 89 |
+
self.shortcut = nn.Sequential(
|
| 90 |
+
nn.Conv3d(in_channels, out_channels, kernel_size=1, bias=False),
|
| 91 |
+
nn.InstanceNorm3d(out_channels, affine=True),
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
def forward(self, x: torch.Tensor, context: torch.Tensor) -> torch.Tensor:
|
| 95 |
+
h = self.relu(self.bn1(self.conv1(x)))
|
| 96 |
+
|
| 97 |
+
# Apply FiLM only to the frames after context_frames
|
| 98 |
+
h_context = h[:, :, : self.context_frames, :, :]
|
| 99 |
+
h_noisy = h[:, :, self.context_frames :, :, :]
|
| 100 |
+
|
| 101 |
+
h_noisy_filmed = self.film(h_noisy, context)
|
| 102 |
+
|
| 103 |
+
h = torch.cat([h_context, h_noisy_filmed], dim=2)
|
| 104 |
+
|
| 105 |
+
h = self.bn2(self.conv2(h))
|
| 106 |
+
return self.relu(h + self.shortcut(x))
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# ==============================================================================
|
| 110 |
+
# == Full 3D U-Net Architecture
|
| 111 |
+
# ==============================================================================
|
| 112 |
+
class UNet_DCAE_3D(nn.Module):
|
| 113 |
+
"""
|
| 114 |
+
A 3D U-Net architecture that only performs spatial down/up-sampling, with FiLM conditioning.
|
| 115 |
+
"""
|
| 116 |
+
|
| 117 |
+
def __init__(
|
| 118 |
+
self,
|
| 119 |
+
in_channels: int = 1,
|
| 120 |
+
out_channels: int = 1,
|
| 121 |
+
features: List[int] = [32, 64, 128, 256],
|
| 122 |
+
context_dim: int = 4,
|
| 123 |
+
embedding_dim: int = 128,
|
| 124 |
+
context_frames: int = 4,
|
| 125 |
+
num_additional_resnet_blocks: int = 0,
|
| 126 |
+
time_emb_dim: int = 64,
|
| 127 |
+
):
|
| 128 |
+
super().__init__()
|
| 129 |
+
self.features = features
|
| 130 |
+
self.context_dim = context_dim
|
| 131 |
+
self.embedding_dim = embedding_dim
|
| 132 |
+
self.context_frames = context_frames
|
| 133 |
+
self.num_additional_resnet_blocks = num_additional_resnet_blocks
|
| 134 |
+
self.time_emb_dim = time_emb_dim
|
| 135 |
+
|
| 136 |
+
# --- Time Embedding ---
|
| 137 |
+
time_mlp_input_dim = context_dim - 1 + self.time_emb_dim
|
| 138 |
+
self.time_mlp = nn.Sequential(
|
| 139 |
+
nn.Linear(time_mlp_input_dim, 128), nn.ReLU(), nn.Linear(128, embedding_dim)
|
| 140 |
+
)
|
| 141 |
+
self.time_emb = SinusoidalPosEmb(dim=self.time_emb_dim)
|
| 142 |
+
|
| 143 |
+
self.encoder_convs = nn.ModuleList()
|
| 144 |
+
self.decoder_convs = nn.ModuleList()
|
| 145 |
+
self.downs = nn.ModuleList()
|
| 146 |
+
|
| 147 |
+
# --- Encoder (Downsampling Path) ---
|
| 148 |
+
current_channels = in_channels
|
| 149 |
+
for feature in features:
|
| 150 |
+
self.encoder_convs.append(
|
| 151 |
+
ResNetBlock3D(
|
| 152 |
+
current_channels, feature * 2, embedding_dim, self.context_frames
|
| 153 |
+
)
|
| 154 |
+
)
|
| 155 |
+
self.downs.append(nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)))
|
| 156 |
+
current_channels = feature * 2
|
| 157 |
+
|
| 158 |
+
# --- Bottleneck ---
|
| 159 |
+
bottleneck_channels = features[-1] * 2
|
| 160 |
+
self.bottleneck = ResNetBlock3D(
|
| 161 |
+
bottleneck_channels, bottleneck_channels, embedding_dim, self.context_frames
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# --- Decoder (Upsampling Path) ---
|
| 165 |
+
for feature in reversed(features):
|
| 166 |
+
self.decoder_convs.append(
|
| 167 |
+
ResNetBlock3D(feature * 4, feature, embedding_dim, self.context_frames)
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
self.additional_resnet_blocks = nn.ModuleList()
|
| 171 |
+
for feature in reversed(features):
|
| 172 |
+
blocks = nn.ModuleList()
|
| 173 |
+
for _ in range(self.num_additional_resnet_blocks):
|
| 174 |
+
blocks.append(
|
| 175 |
+
ResNetBlock3D(feature, feature, embedding_dim, self.context_frames)
|
| 176 |
+
)
|
| 177 |
+
self.additional_resnet_blocks.append(blocks)
|
| 178 |
+
|
| 179 |
+
# --- Final Output Layer ---
|
| 180 |
+
self.final_conv = nn.Conv3d(
|
| 181 |
+
features[0], out_channels, kernel_size=(1, 1, 1)
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
| 185 |
+
time_val = t[:, -1]
|
| 186 |
+
emb = self.time_emb(time_val)
|
| 187 |
+
spatial = t[:, :-1]
|
| 188 |
+
combined = torch.cat([spatial, emb], dim=1)
|
| 189 |
+
context = self.time_mlp(combined)
|
| 190 |
+
skip_connections = []
|
| 191 |
+
|
| 192 |
+
# --- Encoder Path ---
|
| 193 |
+
for i in range(len(self.features)):
|
| 194 |
+
|
| 195 |
+
x = self.encoder_convs[i](x, context)
|
| 196 |
+
skip_connections.append(x)
|
| 197 |
+
x = self.downs[i](x)
|
| 198 |
+
|
| 199 |
+
# --- Bottleneck ---
|
| 200 |
+
x = self.bottleneck(x, context)
|
| 201 |
+
|
| 202 |
+
# --- Decoder Path ---
|
| 203 |
+
skip_connections = skip_connections[::-1]
|
| 204 |
+
for i in range(len(self.decoder_convs)):
|
| 205 |
+
|
| 206 |
+
x = F.interpolate(x, scale_factor=(1, 2, 2), mode='nearest')
|
| 207 |
+
skip_connection = skip_connections[i]
|
| 208 |
+
|
| 209 |
+
if x.shape != skip_connection.shape:
|
| 210 |
+
x = F.interpolate(x, size=skip_connection.shape[2:])
|
| 211 |
+
|
| 212 |
+
concat_skip = torch.cat((skip_connection, x), dim=1)
|
| 213 |
+
x = self.decoder_convs[i](concat_skip, context)
|
| 214 |
+
|
| 215 |
+
for block in self.additional_resnet_blocks[i]:
|
| 216 |
+
x = block(x, context)
|
| 217 |
+
|
| 218 |
+
return self.final_conv(x)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
# --- Example Usage ---
|
| 222 |
+
if __name__ == "__main__":
|
| 223 |
+
print(
|
| 224 |
+
"--- Testing Full 3D U-Net with DC-AE, ResNet Blocks, and FiLM conditioning ---"
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
# Define model parameters
|
| 228 |
+
CONTEXT_FRAMES = 4
|
| 229 |
+
IMG_DEPTH = CONTEXT_FRAMES + 2
|
| 230 |
+
IMG_HEIGHT, IMG_WIDTH = 128, 128
|
| 231 |
+
IN_CHANNELS = 3
|
| 232 |
+
OUT_CHANNELS = 3
|
| 233 |
+
BATCH_SIZE = 2
|
| 234 |
+
CONTEXT_DIM = 128
|
| 235 |
+
|
| 236 |
+
# Create a random input tensor (N, C, D, H, W)
|
| 237 |
+
input_tensor = torch.randn(
|
| 238 |
+
BATCH_SIZE, IN_CHANNELS, IMG_DEPTH, IMG_HEIGHT, IMG_WIDTH
|
| 239 |
+
)
|
| 240 |
+
t = torch.rand(BATCH_SIZE, CONTEXT_DIM)
|
| 241 |
+
print(f"Input shape: {input_tensor.shape}")
|
| 242 |
+
print(f"Time shape: {t.shape}")
|
| 243 |
+
|
| 244 |
+
# Initialize the model
|
| 245 |
+
model = UNet_DCAE_3D(
|
| 246 |
+
in_channels=IN_CHANNELS,
|
| 247 |
+
out_channels=OUT_CHANNELS,
|
| 248 |
+
features=[64, 128, 256],
|
| 249 |
+
context_dim=CONTEXT_DIM,
|
| 250 |
+
embedding_dim=128,
|
| 251 |
+
context_frames=CONTEXT_FRAMES,
|
| 252 |
+
num_additional_resnet_blocks=3
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
# Perform a forward pass
|
| 256 |
+
output_tensor = model(input_tensor, t)
|
| 257 |
+
|
| 258 |
+
print(f"Output shape: {output_tensor.shape}")
|
| 259 |
+
|
| 260 |
+
# Verify the output shape is as expected
|
| 261 |
+
expected_shape = (BATCH_SIZE, OUT_CHANNELS, IMG_DEPTH, IMG_HEIGHT, IMG_WIDTH)
|
| 262 |
+
assert output_tensor.shape == expected_shape, (
|
| 263 |
+
f"Shape mismatch! Expected {expected_shape}, got {output_tensor.shape}"
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
print("✅ 3D U-Net model shape test PASSED.")
|
| 267 |
+
|
| 268 |
+
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 269 |
+
print(f"Total trainable parameters: {num_params:,}")
|