NeuroBLAST-V3-SYNTH-EC-150000 / configuration_neuroblast.py
mkurman's picture
Upload 9 files
25597f5 verified
# coding=utf-8
# Copyright 2025 Mariusz Kurman, MedIT Solutions Sp. z o.o, Poland. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NeuroBLASTConfig model configuration"""
from transformers.configuration_utils import PretrainedConfig, layer_type_validation
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
import math
import warnings
logger = logging.get_logger(__name__)
class NeuroBLASTConfig(PretrainedConfig):
model_type = "neuroblast"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `Qwen3`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
energy_dim=128,
intermediate_size=22016,
num_hidden_layers=32,
num_associative_layers=16,
num_sensory_layers=8,
num_motor_layers=8,
num_attention_heads=32,
num_key_value_heads=32,
head_dim=128,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
layer_types=None,
attention_dropout=0.0,
attention_every=0,
dropout=0.0,
scale=1.0,
kernel_size=5,
temporal_kernel_size=5,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.energy_dim = energy_dim
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_associative_layers = num_associative_layers
self.num_sensory_layers = num_sensory_layers
self.num_motor_layers = num_motor_layers
if (
num_hidden_layers
!= num_associative_layers + num_sensory_layers + num_motor_layers
):
self.num_hidden_layers = (
num_associative_layers + num_sensory_layers + num_motor_layers
)
warnings.warn(
f"num_hidden_layers ({num_hidden_layers}) is not equal to num_associative_layers ({num_associative_layers}) + num_sensory_layers ({num_sensory_layers}) + num_motor_layers ({num_motor_layers}). Setting num_hidden_layers to {num_associative_layers + num_sensory_layers + num_motor_layers}."
)
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if self.use_sliding_window else None
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = head_dim
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.attention_every = attention_every
self.scale = scale
self.kernel_size = kernel_size
self.temporal_kernel_size = temporal_kernel_size
self.dropout = dropout
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
self.layer_types = layer_types
if self.layer_types is None:
self.layer_types = [
("full_attention") for i in range(self.num_hidden_layers)
]
layer_type_validation(self.layer_types)
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["NeuroBLASTConfig"]