Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/mrm8488/CodeBERTaPy/README.md
README.md
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: code
|
| 3 |
+
thumbnail:
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# CodeBERTaPy
|
| 7 |
+
|
| 8 |
+
CodeBERTaPy is a RoBERTa-like model trained on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset from GitHub for `python` by [Manuel Romero](https://twitter.com/mrm8488)
|
| 9 |
+
|
| 10 |
+
The **tokenizer** is a Byte-level BPE tokenizer trained on the corpus using Hugging Face `tokenizers`.
|
| 11 |
+
|
| 12 |
+
Because it is trained on a corpus of code (vs. natural language), it encodes the corpus efficiently (the sequences are between 33% to 50% shorter, compared to the same corpus tokenized by gpt2/roberta).
|
| 13 |
+
|
| 14 |
+
The (small) **model** is a 6-layer, 84M parameters, RoBERTa-like Transformer model – that’s the same number of layers & heads as DistilBERT – initialized from the default initialization settings and trained from scratch on the full `python` corpus for 4 epochs.
|
| 15 |
+
|
| 16 |
+
## Quick start: masked language modeling prediction
|
| 17 |
+
|
| 18 |
+
```python
|
| 19 |
+
PYTHON_CODE = """
|
| 20 |
+
fruits = ['apples', 'bananas', 'oranges']
|
| 21 |
+
for idx, <mask> in enumerate(fruits):
|
| 22 |
+
print("index is %d and value is %s" % (idx, val))
|
| 23 |
+
""".lstrip()
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
### Does the model know how to complete simple Python code?
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
from transformers import pipeline
|
| 30 |
+
|
| 31 |
+
fill_mask = pipeline(
|
| 32 |
+
"fill-mask",
|
| 33 |
+
model="mrm8488/CodeBERTaPy",
|
| 34 |
+
tokenizer="mrm8488/CodeBERTaPy"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
fill_mask(PYTHON_CODE)
|
| 38 |
+
|
| 39 |
+
## Top 5 predictions:
|
| 40 |
+
|
| 41 |
+
'val' # prob 0.980728805065155
|
| 42 |
+
'value'
|
| 43 |
+
'idx'
|
| 44 |
+
',val'
|
| 45 |
+
'_'
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
### Yes! That was easy 🎉 Let's try with another Flask like example
|
| 49 |
+
|
| 50 |
+
```python
|
| 51 |
+
PYTHON_CODE2 = """
|
| 52 |
+
@app.route('/<name>')
|
| 53 |
+
def hello_name(name):
|
| 54 |
+
return "Hello {}!".format(<mask>)
|
| 55 |
+
|
| 56 |
+
if __name__ == '__main__':
|
| 57 |
+
app.run()
|
| 58 |
+
""".lstrip()
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
fill_mask(PYTHON_CODE2)
|
| 62 |
+
|
| 63 |
+
## Top 5 predictions:
|
| 64 |
+
|
| 65 |
+
'name' # prob 0.9961813688278198
|
| 66 |
+
' name'
|
| 67 |
+
'url'
|
| 68 |
+
'description'
|
| 69 |
+
'self'
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
### Yeah! It works 🎉 Let's try with another Tensorflow/Keras like example
|
| 73 |
+
|
| 74 |
+
```python
|
| 75 |
+
PYTHON_CODE3="""
|
| 76 |
+
model = keras.Sequential([
|
| 77 |
+
keras.layers.Flatten(input_shape=(28, 28)),
|
| 78 |
+
keras.layers.<mask>(128, activation='relu'),
|
| 79 |
+
keras.layers.Dense(10, activation='softmax')
|
| 80 |
+
])
|
| 81 |
+
""".lstrip()
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
fill_mask(PYTHON_CODE3)
|
| 85 |
+
|
| 86 |
+
## Top 5 predictions:
|
| 87 |
+
|
| 88 |
+
'Dense' # prob 0.4482928514480591
|
| 89 |
+
'relu'
|
| 90 |
+
'Flatten'
|
| 91 |
+
'Activation'
|
| 92 |
+
'Conv'
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
> Great! 🎉
|
| 96 |
+
|
| 97 |
+
## This work is heavily inspired on [CodeBERTa](https://github.com/huggingface/transformers/blob/master/model_cards/huggingface/CodeBERTa-small-v1/README.md) by huggingface team
|
| 98 |
+
|
| 99 |
+
<br>
|
| 100 |
+
|
| 101 |
+
## CodeSearchNet citation
|
| 102 |
+
|
| 103 |
+
<details>
|
| 104 |
+
|
| 105 |
+
```bibtex
|
| 106 |
+
@article{husain_codesearchnet_2019,
|
| 107 |
+
title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}},
|
| 108 |
+
shorttitle = {{CodeSearchNet} {Challenge}},
|
| 109 |
+
url = {http://arxiv.org/abs/1909.09436},
|
| 110 |
+
urldate = {2020-03-12},
|
| 111 |
+
journal = {arXiv:1909.09436 [cs, stat]},
|
| 112 |
+
author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
|
| 113 |
+
month = sep,
|
| 114 |
+
year = {2019},
|
| 115 |
+
note = {arXiv: 1909.09436},
|
| 116 |
+
}
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
</details>
|
| 120 |
+
|
| 121 |
+
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
|
| 122 |
+
|
| 123 |
+
> Made with <span style="color: #e25555;">♥</span> in Spain
|