File size: 10,863 Bytes
edb09e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""

Quick Start Test Script



Run this script to verify everything is set up correctly before deployment.

This performs basic smoke tests on the model and inference API.

"""

import sys
from pathlib import Path
from typing import Any


def test_imports():
    """Test that all required packages are installed."""
    print("=" * 70)
    print("TEST 1: Checking Required Packages")
    print("=" * 70)
    
    required_packages = {
        'sklearn': 'scikit-learn',
        'pandas': 'pandas',
        'numpy': 'numpy',
        'joblib': 'joblib'
    }
    
    missing: list[str] = []
    for module_name, package_name in required_packages.items():
        try:
            __import__(module_name)
            print(f"βœ… {package_name} is installed")
        except ImportError:
            print(f"❌ {package_name} is NOT installed")
            missing.append(package_name)
    
    if missing:
        print(f"\n⚠️  Missing packages: {', '.join(missing)}")
        print("Install them with: pip install -r requirements.txt")
        return False
    
    print("\nβœ… All required packages are installed!\n")
    return True


def test_files():
    """Test that all required files exist."""
    print("=" * 70)
    print("TEST 2: Checking Required Files")
    print("=" * 70)
    
    required_files = [
        'house_price_model.joblib',
        'preprocessing_pipeline.joblib',
        'inference.py',
        'README.md',
        'requirements.txt',
        'LICENSE',
        '.gitattributes',
        'example_usage.py'
    ]
    
    missing: list[str] = []
    for filename in required_files:
        filepath = Path(filename)
        if filepath.exists():
            size = filepath.stat().st_size
            size_str = f"{size:,} bytes" if size < 1024 else f"{size/1024:.1f} KB" if size < 1024*1024 else f"{size/(1024*1024):.1f} MB"
            print(f"βœ… {filename:35s} ({size_str})")
        else:
            print(f"❌ {filename:35s} (MISSING)")
            missing.append(filename)
    
    if missing:
        print(f"\n⚠️  Missing files: {', '.join(missing)}")
        return False
    
    print("\nβœ… All required files exist!\n")
    return True


def test_model_loading() -> tuple[bool, Any]:
    """Test that the model can be loaded."""
    print("=" * 70)
    print("TEST 3: Loading Model and Pipeline")
    print("=" * 70)
    
    try:
        from inference import HousePricePredictor
        
        predictor = HousePricePredictor()
        predictor.load()
        
        print("βœ… Model and pipeline loaded successfully!\n")
        return True, predictor
        
    except Exception as e:
        print(f"❌ Failed to load model: {e}\n")
        return False, None


def test_prediction(predictor: Any) -> bool:
    """Test that predictions work correctly."""
    print("=" * 70)
    print("TEST 4: Making Test Predictions")
    print("=" * 70)
    
    test_cases: list[dict[str, Any]] = [
        {
            'name': 'Expensive Bay Area house',
            'data': {
                'longitude': -122.23, 'latitude': 37.88,
                'housing_median_age': 41.0, 'total_rooms': 880.0,
                'total_bedrooms': 129.0, 'population': 322.0,
                'households': 126.0, 'median_income': 8.3252,
                'ocean_proximity': 'NEAR BAY'
            },
            'expected_range': (300000, 600000)
        },
        {
            'name': 'Inland moderate house',
            'data': {
                'longitude': -119.56, 'latitude': 36.78,
                'housing_median_age': 15.0, 'total_rooms': 4500.0,
                'total_bedrooms': 800.0, 'population': 1800.0,
                'households': 750.0, 'median_income': 3.2,
                'ocean_proximity': 'INLAND'
            },
            'expected_range': (100000, 300000)
        },
        {
            'name': 'Coastal high-income house',
            'data': {
                'longitude': -118.40, 'latitude': 34.07,
                'housing_median_age': 35.0, 'total_rooms': 2500.0,
                'total_bedrooms': 500.0, 'population': 1200.0,
                'households': 450.0, 'median_income': 7.5,
                'ocean_proximity': '<1H OCEAN'
            },
            'expected_range': (250000, 550000)
        }
    ]
    
    all_passed = True
    
    for i, test in enumerate(test_cases, 1):
        print(f"\nTest case {i}: {test['name']}")
        print("-" * 70)
        
        try:
            prediction = predictor.predict(test['data'])
            price = prediction[0]
            min_price, max_price = test['expected_range']
            
            print(f"Input: Income=${test['data']['median_income']*10000:,.0f}, "
                  f"Location=({test['data']['longitude']}, {test['data']['latitude']}), "
                  f"Proximity={test['data']['ocean_proximity']}")
            print(f"Predicted price: ${price:,.2f}")
            
            if min_price <= price <= max_price:
                print(f"βœ… Prediction is within expected range (${min_price:,} - ${max_price:,})")
            else:
                print(f"⚠️  Prediction outside expected range (${min_price:,} - ${max_price:,})")
                print("   (This might be okay, just flagging for review)")
            
        except Exception as e:
            print(f"❌ Prediction failed: {e}")
            all_passed = False
    
    if all_passed:
        print("\nβœ… All predictions completed successfully!\n")
    else:
        print("\n⚠️  Some predictions had issues\n")
    
    return all_passed


def test_batch_prediction(predictor: Any) -> bool:
    """Test batch predictions."""
    print("=" * 70)
    print("TEST 5: Batch Prediction")
    print("=" * 70)
    
    try:
        import pandas as pd
        
        # Create batch data
        batch_data = pd.DataFrame([
            {
                'longitude': -122.23, 'latitude': 37.88,
                'housing_median_age': 41.0, 'total_rooms': 880.0,
                'total_bedrooms': 129.0, 'population': 322.0,
                'households': 126.0, 'median_income': 8.3252,
                'ocean_proximity': 'NEAR BAY'
            },
            {
                'longitude': -119.56, 'latitude': 36.78,
                'housing_median_age': 15.0, 'total_rooms': 4500.0,
                'total_bedrooms': 800.0, 'population': 1800.0,
                'households': 750.0, 'median_income': 3.2,
                'ocean_proximity': 'INLAND'
            }
        ])
        
        predictions = predictor.predict(batch_data)
        
        print(f"βœ… Successfully predicted {len(predictions)} houses in batch:")
        for i, price in enumerate(predictions, 1):
            print(f"   House {i}: ${price:,.2f}")
        
        print("\nβœ… Batch prediction works!\n")
        return True
        
    except Exception as e:
        print(f"❌ Batch prediction failed: {e}\n")
        return False


def test_validation(predictor: Any) -> bool:
    """Test input validation."""
    print("=" * 70)
    print("TEST 6: Input Validation")
    print("=" * 70)
    
    # Test with missing feature
    print("\nTest: Missing required feature...")
    try:
        import pandas as pd
        invalid_data = pd.DataFrame([{
            'longitude': -122.23,
            'latitude': 37.88,
            # Missing other required features
        }])
        predictor.predict(invalid_data)
        print("❌ Should have raised an error for missing features")
        return False
    except ValueError as e:
        print(f"βœ… Correctly caught missing features: {e}")
    
    # Test with invalid ocean_proximity
    print("\nTest: Invalid ocean_proximity value...")
    try:
        import pandas as pd
        invalid_data = pd.DataFrame([{
            'longitude': -122.23, 'latitude': 37.88,
            'housing_median_age': 41.0, 'total_rooms': 880.0,
            'total_bedrooms': 129.0, 'population': 322.0,
            'households': 126.0, 'median_income': 8.3252,
            'ocean_proximity': 'INVALID_VALUE'
        }])
        predictor.predict(invalid_data)
        print("❌ Should have raised an error for invalid ocean_proximity")
        return False
    except ValueError as e:
        print(f"βœ… Correctly caught invalid value: {e}")
    
    print("\nβœ… Input validation works correctly!\n")
    return True


def main() -> None:
    """Run all tests."""
    print("\n" + "=" * 70)
    print("🏠 CALIFORNIA HOUSE PRICE PREDICTION - DEPLOYMENT READINESS CHECK")
    print("=" * 70 + "\n")
    
    results: list[tuple[str, bool]] = []
    
    # Test 1: Imports
    results.append(("Required packages", test_imports()))
    
    if not results[-1][1]:
        print("\n❌ Cannot continue without required packages. Install them first.")
        sys.exit(1)
    
    # Test 2: Files
    results.append(("Required files", test_files()))
    
    if not results[-1][1]:
        print("\n❌ Cannot continue without required files.")
        sys.exit(1)
    
    # Test 3: Model loading
    success, predictor = test_model_loading()
    results.append(("Model loading", success))
    
    if not success:
        print("\n❌ Cannot continue without loading the model.")
        sys.exit(1)
    
    # Test 4: Predictions
    results.append(("Predictions", test_prediction(predictor)))
    
    # Test 5: Batch prediction
    results.append(("Batch prediction", test_batch_prediction(predictor)))
    
    # Test 6: Validation
    results.append(("Input validation", test_validation(predictor)))
    
    # Summary
    print("=" * 70)
    print("SUMMARY")
    print("=" * 70)
    
    for test_name, passed in results:
        status = "βœ… PASS" if passed else "❌ FAIL"
        print(f"{test_name:25s} {status}")
    
    all_passed = all(result[1] for result in results)
    
    print("\n" + "=" * 70)
    if all_passed:
        print("πŸŽ‰ ALL TESTS PASSED! Your model is ready for deployment!")
        print("=" * 70)
        print("\nNext steps:")
        print("1. Review the DEPLOYMENT_GUIDE.md file")
        print("2. Set up Git LFS: git lfs install")
        print("3. Create a Hugging Face account if you don't have one")
        print("4. Follow the deployment steps in DEPLOYMENT_GUIDE.md")
        print("\n✨ Your model will be live on Hugging Face Model Hub soon!")
    else:
        print("⚠️  SOME TESTS FAILED - Please fix the issues above")
        print("=" * 70)
        sys.exit(1)
    
    print()


if __name__ == "__main__":
    main()